The Lie n-Engel property in group rings

被引:17
|
作者
Lee, GT [1 ]
机构
[1] Univ Alberta, Dept Math Sci, Edmonton, AB T6G 2G1, Canada
关键词
D O I
10.1080/00927870008826866
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let FG be the group ring of a group G over a field F whose characteristic is p not equal 2. Let * denote the involution on FG which sends each group element to its inverse. Let (FG)(+) and (FG)(-) denote, respectively, the sets of symmetric and skew elements with respect to *. The conditions under which the group ring is Lie n-Engel for some n are known. We show that if either (FG)(+) or (FG)(-) is Lie n-Engel, and G is devoid of 2-elements, then FG is Lie m-Engel for some m. Furthermore, we completely classify the remaining groups for which (FG)(+) is Lie n-Engel.
引用
收藏
页码:867 / 881
页数:15
相关论文
共 50 条
  • [31] Lie and Engel theorems for n-tuple lie algebras
    N. A. Koreshkov
    Siberian Mathematical Journal, 2013, 54 : 472 - 478
  • [32] Engel Subalgebras of n-Lie Algebras
    Donald W.BARNES
    Acta Mathematica Sinica(English Series), 2008, 24 (01) : 159 - 166
  • [33] Engel subalgebras of n-Lie algebras
    Barnes, Donald W.
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (01) : 159 - 166
  • [34] Engel subalgebras of n-Lie algebras
    Donald W. Barnes
    Acta Mathematica Sinica, English Series, 2008, 24 : 159 - 166
  • [35] LIE *- NILPOTENCE OF GROUP RINGS
    Gao, Yanyan
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (07) : 2800 - 2812
  • [36] LIE SOLVABLE GROUP RINGS
    PASSI, IBS
    PASSMAN, DS
    SEHGAL, SK
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1973, 25 (04): : 748 - 757
  • [37] AN ENGEL CONDITION OF GENERALIZED DERIVATIONS WITH ANNIHILATOR ON LIE IDEAL IN PRIME RINGS
    Dhara, Basudeb
    Kar, Sukhendu
    Pradhan, Krishna Gopal
    MATEMATICKI VESNIK, 2016, 68 (03): : 164 - 174
  • [38] An Engel condition with two generalized derivations on Lie ideals of prime rings
    Liu, Cheng-Kai
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023, 22 (05)
  • [39] Bounded Engel and solvable unitary units in group rings
    Lee, Gregory T.
    Sehgal, Sudarshan K.
    Spinelli, Ernesto
    JOURNAL OF ALGEBRA, 2018, 501 : 225 - 232
  • [40] A property of Lie group orbits
    Bozicevic, M
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2000, 43 (01): : 47 - 50