The Lie n-Engel property in group rings

被引:17
|
作者
Lee, GT [1 ]
机构
[1] Univ Alberta, Dept Math Sci, Edmonton, AB T6G 2G1, Canada
关键词
D O I
10.1080/00927870008826866
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let FG be the group ring of a group G over a field F whose characteristic is p not equal 2. Let * denote the involution on FG which sends each group element to its inverse. Let (FG)(+) and (FG)(-) denote, respectively, the sets of symmetric and skew elements with respect to *. The conditions under which the group ring is Lie n-Engel for some n are known. We show that if either (FG)(+) or (FG)(-) is Lie n-Engel, and G is devoid of 2-elements, then FG is Lie m-Engel for some m. Furthermore, we completely classify the remaining groups for which (FG)(+) is Lie n-Engel.
引用
收藏
页码:867 / 881
页数:15
相关论文
共 50 条
  • [1] Semilocal rings with n-Engel multiplicative group
    Amberg, B
    Sysak, Y
    ARCHIV DER MATHEMATIK, 2004, 83 (05) : 416 - 421
  • [2] Semilocal rings with n-Engel multiplicative group
    Bernhard Amberg
    Yaroslav Sysak
    Archiv der Mathematik, 2004, 83 : 416 - 421
  • [3] GROUP RINGS WITH SOLVABLE N-ENGEL UNIT GROUPS
    FISHER, JL
    PARMENTER, MM
    SEHGAL, SK
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 59 (02) : 195 - 200
  • [4] GROUP RINGS WHOSE SYMMETRIC UNITS GENERATE AN n-ENGEL GROUP
    Lee, Gregory T.
    Spinelli, Ernesto
    COMMUNICATIONS IN ALGEBRA, 2010, 38 (11) : 4056 - 4062
  • [5] RINGS WITH ALGEBRAIC N-ENGEL ELEMENTS
    GIAMBRUNO, A
    GONCALVES, JZ
    MANDEL, A
    COMMUNICATIONS IN ALGEBRA, 1994, 22 (05) : 1685 - 1701
  • [6] Action of three generalized derivations on Lie ideals in prime rings with n-Engel condition
    Dhara, Basudeb
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,
  • [7] ON THE RIGHT n-ENGEL GROUP ELEMENTS
    Khosravi, H.
    INTERNATIONAL JOURNAL OF GROUP THEORY, 2012, 1 (01) : 47 - 51
  • [8] Generalised nilpotence conditions in n-Engel Lie algebras
    Riley, DM
    COMMUNICATIONS IN ALGEBRA, 2000, 28 (10) : 4619 - 4634
  • [9] On locally graded n-Engel and positively n-Engel groups
    Bajorska, Beata
    Macedonska, Olga
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2009, 74 (3-4): : 249 - 256
  • [10] Weakly Lie Engel condition on group rings
    Ramezan-Nassab, M.
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (09) : 3875 - 3880