One-dimensional directed sandpile models and the area under a Brownian curve

被引:9
|
作者
Stapleton, M. A. [1 ]
Christensen, K. [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London, England
来源
关键词
D O I
10.1088/0305-4470/39/29/007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive the steady state properties of a general directed 'sandpile' model in one dimension. Using a central limit theorem for dependent random variables we find the precise conditions for the model to belong to the universality class of the totally asymmetric Oslo model, thereby identifying a large universality class of directed sandpiles. We map the avalanche size to the area under a Brownian curve with an absorbing boundary at the origin, motivating us to solve this Brownian curve problem. Thus, we are able to determine the moment generating function for the avalanche-size probability in this universality class, explicitly calculating amplitudes of the leading order terms.
引用
收藏
页码:9107 / 9126
页数:20
相关论文
共 50 条
  • [21] ONSET OF BROWNIAN MOTION IN A ONE-DIMENSIONAL FLUID
    BISHOP, M
    BERNE, BJ
    JOURNAL OF CHEMICAL PHYSICS, 1972, 56 (06): : 2850 - &
  • [22] The span of one-dimensional multiparticle Brownian motion
    Sastry, GM
    Agmon, N
    JOURNAL OF CHEMICAL PHYSICS, 1996, 104 (08): : 3022 - 3025
  • [23] COOLING CURVE IN A ONE-DIMENSIONAL CRYSTAL
    MORK, KJ
    PHYSICAL REVIEW B, 1970, 1 (12): : 4847 - &
  • [24] Exact solution of the one-dimensional deterministic fixed-energy sandpile
    Dall'Asta, L
    PHYSICAL REVIEW LETTERS, 2006, 96 (05)
  • [25] Critical behavior of a one-dimensional fixed-energy stochastic sandpile
    Dickman, R.
    Alava, M.
    Muñoz, M.A.
    Peltola, J.
    Vespignani, A.
    Zapperi, S.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 64 (5 II): : 1 - 056104
  • [26] One-dimensional models of thermal activation under shear stress
    Nabarro, FRN
    PHILOSOPHICAL MAGAZINE, 2003, 83 (26): : 3047 - 3054
  • [27] One-dimensional microfiltration models
    Polyakov, SV
    Maksimov, ED
    Polyakov, VS
    THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING, 1995, 29 (04) : 329 - 332
  • [29] ANALYTICITY AND PROBABILITY PROPERTIES OF ONE-DIMENSIONAL BROWNIAN MOTION
    GHAFFARI, A
    JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS SECTION B-MATHEMATICAL SCIENCES, 1961, 65 (04): : 251 - 260
  • [30] On one-dimensional models for hydrodynamics
    Escudero, Carlos
    PHYSICA D-NONLINEAR PHENOMENA, 2006, 217 (01) : 58 - 63