A New Dominance Relation-Based Evolutionary Algorithm for Many-Objective Optimization

被引:611
|
作者
Yuan, Yuan [1 ]
Xu, Hua [1 ]
Wang, Bo [1 ]
Yao, Xin [2 ]
机构
[1] Tsinghua Univ, Dept Comp Sci & Technol, Tsinghua Natl Lab Informat Sci & Technol, State Key Lab Intelligent Technol & Syst, Beijing 100084, Peoples R China
[2] Univ Birmingham, Sch Comp Sci, Ctr Excellence Res Computat Intelligence & Applic, Birmingham B15 2TT, W Midlands, England
基金
中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
Convergence; diversity; dominance relation; many-objective optimization; nondominated sorting; DECOMPOSITION; MOEA/D;
D O I
10.1109/TEVC.2015.2420112
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many-objective optimization has posed a great challenge to the classical Pareto dominance-based multiobjective evolutionary algorithms (MOEAs). In this paper, an evolutionary algorithm based on a new dominance relation is proposed for many-objective optimization. The proposed evolutionary algorithm aims to enhance the convergence of the recently suggested nondominated sorting genetic algorithm III by exploiting the fitness evaluation scheme in theMOEA based on decomposition, but still inherit the strength of the former in diversity maintenance. In the proposed algorithm, the nondominated sorting scheme based on the introduced new dominance relation is employed to rank solutions in the environmental selection phase, ensuring both convergence and diversity. The proposed algorithm is evaluated on a number of well-known benchmark problems having 3-15 objectives and compared against eight state-of-the-art algorithms. The extensive experimental results show that the proposed algorithm can work well on almost all the test functions considered in this paper, and it is compared favorably with the other many-objective optimizers. Additionally, a parametric study is provided to investigate the influence of a key parameter in the proposed algorithm.
引用
收藏
页码:16 / 37
页数:22
相关论文
共 50 条
  • [31] Dominance relation selection and angle-based distribution evaluation for many-objective evolutionary algorithm
    Zhou, Shengqing
    Dai, Yiru
    Chen, Zihao
    SWARM AND EVOLUTIONARY COMPUTATION, 2024, 86
  • [32] A Many-Objective Evolutionary Algorithm Based on Non-Linear Dominance
    Zhou Z.
    Dai C.
    Xue X.
    International Journal of Swarm Intelligence Research, 2023, 14 (03)
  • [33] A many-objective evolutionary algorithm based on three states for solving many-objective optimization problem
    Zhao, Jiale
    Zhang, Huijie
    Yu, Huanhuan
    Fei, Hansheng
    Huang, Xiangdang
    Yang, Qiuling
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [34] Many-objective optimization based on sub-objective evolutionary algorithm
    Jiang, Wenzhi (ytjwz@sohu.com), 1910, Beijing University of Aeronautics and Astronautics (BUAA) (41):
  • [35] A new evolutionary algorithm for solving many-objective optimization problems
    Zou, Xiufen
    Chen, Yu
    Liu, Minzhong
    Kang, Lishan
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2008, 38 (05): : 1402 - 1412
  • [36] A multistage evolutionary algorithm for many-objective optimization
    Shen, Jiangtao
    Wang, Peng
    Dong, Huachao
    Li, Jinglu
    Wang, Wenxin
    INFORMATION SCIENCES, 2022, 589 : 531 - 549
  • [37] A new decomposition based evolutionary algorithm with uniform designs for many-objective optimization
    Dai, Cai
    Wang, Yuping
    APPLIED SOFT COMPUTING, 2015, 30 : 238 - 248
  • [38] A new evolutionary algorithm based on contraction method for many-objective optimization problems
    Wang, Y. (ywang@xidian.edu.cn), 1600, Elsevier Inc. (245):
  • [40] A new uniform evolutionary algorithm based on decomposition and CDAS for many-objective optimization
    Dai Cai
    Wang Yuping
    KNOWLEDGE-BASED SYSTEMS, 2015, 85 : 131 - 142