We study the eigenvalues of a Laplace-Beltrami operator defined on the set of the symmetric polynomials, where the eigenvalues are expressed in terms of partitions of integers. To study the behaviors of these eigenvalues, we assign partitions with the restricted uniform measure, the restricted Jack measure, the uniform measure, or the Plancherel measure. We first obtain a new limit theorem on the restricted uniform measure. Then, by using it together with known results on other three measures, we prove that the global distribution of the eigenvalues is asymptotically a new distribution mu, the Gamma distribution, the Gumbel distribution, and the Tracy-Widom distribution, respectively. The Tracy-Widom distribution is obtained for a special case only due to a technical constraint. An explicit representation of mu is obtained by a function of independent random variables. Two open problems are also asked.