Prediction of Manufacturing Plant's Electric Power Using Machine Learning

被引:0
|
作者
Yeom, Kyoe-Rae [1 ]
Choi, Hyo-Sub [1 ]
机构
[1] KETI Korea Elect Technol Inst, Embedded SW, 22,Daewangpangyo Ro 712beon Gil, Seongnam Si, Gyeonggi Do, South Korea
来源
2018 TENTH INTERNATIONAL CONFERENCE ON UBIQUITOUS AND FUTURE NETWORKS (ICUFN 2018) | 2018年
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we apply the data accumulated through E-IOT platform to machine learning method to find significant variables first and predict the electric power generated in manufacturing process by using these variables. Pre-processing such as resampling of data was carried out before the prediction. In order to select the significant variables, 25 variables were derived using Lasso (least absolute shrinkage and selection operator), one of the machine learning techniques. We used Deep Learning 's LSTM technique, one of the field of machine learning for the prediction.
引用
收藏
页码:808 / 810
页数:3
相关论文
共 50 条
  • [21] Photovoltaic Power Analysis and Prediction Using Machine Learning Methods
    Shehadah, Halah
    Shamir, Lior
    2021 3RD INTERNATIONAL CONFERENCE ON SMART POWER & INTERNET ENERGY SYSTEMS (SPIES 2021), 2021, : 404 - 408
  • [22] Accurate Performance and Power Prediction for FPGAs Using Machine Learning
    Sawalha, Lina
    Abuaita, Tawfiq
    Cowley, Martin
    Akhmatdinov, Sergei
    Dubs, Adam
    2022 IEEE 30TH INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES (FCCM 2022), 2022, : 228 - 228
  • [23] Prediction of electrical power disturbances using machine learning techniques
    Shaimaa Omran
    Enas M. F. El Houby
    Journal of Ambient Intelligence and Humanized Computing, 2020, 11 : 2987 - 3003
  • [24] Prediction of electrical power disturbances using machine learning techniques
    Omran, Shaimaa
    El Houby, Enas M. F.
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2020, 11 (07) : 2987 - 3003
  • [25] Prediction of wind power density using machine learning algorithms
    Pozdnoukhov, Alexei
    Kanevski, Mikhail
    Timonin, Vadim
    PROCEEDINGS OF THE IAMG '07: GEOMATHEMATICS AND GIS ANALYSIS OF RESOURCES, ENVIRONMENT AND HAZARDS, 2007, : 620 - +
  • [26] Machine Learning Approach to NOx Prediction for SCR Process of Thermal Power Plant
    Matsuzaki, A.
    Kiribuchi, D.
    Shimizu, K.
    IFAC PAPERSONLINE, 2023, 56 (02): : 2858 - 2864
  • [27] Performance prediction of a clean coal power plant via machine learning and deep learning techniques
    Haddadin, Mariana
    Mohamed, Omar
    Abu Elhaija, Wejdan
    Matar, Mustafa
    ENERGY & ENVIRONMENT, 2023, 35 (07) : 3575 - 3599
  • [28] Prediction of daily photovoltaic plant energy output using machine learning
    Girdhani, Bharat
    Agrawal, Meena
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2024, 46 (01) : 5904 - 5924
  • [29] APOPLASTP: prediction of effectors and plant proteins in the apoplast using machine learning
    Sperschneider, Jana
    Dodds, Peter N.
    Singh, Karam B.
    Taylor, Jennifer M.
    NEW PHYTOLOGIST, 2018, 217 (04) : 1764 - 1778
  • [30] Wastewater Plant Reliability Prediction Using the Machine Learning Classification Algorithms
    Velimirovic, Lazar Z.
    Jankovic, Radmila
    Velimirovic, Jelena D.
    Janjic, Aleksandar
    SYMMETRY-BASEL, 2021, 13 (08):