Bisociative Literature-Based Discovery: Lessons Learned and New Word Embedding Approach

被引:2
|
作者
Lavrac, Nada [1 ,2 ]
Martinc, Matej [1 ,3 ]
Pollak, Senja [1 ]
Novak, Marusa Pompe [4 ]
Cestnik, Bojan [1 ,5 ]
机构
[1] Jozef Stefan Inst, Jamova 39, Ljubljana 1000, Slovenia
[2] Univ Nova Gorica, Vipayska 13, Nova Gorica 5000, Slovenia
[3] Jozef Stefan Int, Postgrad Sch, Jamova 39, Ljubljana 1000, Slovenia
[4] Natl Inst Biol, Vecna Pot 111, Ljubljana 1000, Slovenia
[5] Temida Doo, Dunajska Cesta 51, Ljubljana 1000, Slovenia
基金
欧盟地平线“2020”;
关键词
Literature-based discovery; Cross-domain bisociations; Computational creativity; Embeddings technology; MAGNESIUM; MIGRAINE;
D O I
10.1007/s00354-020-00108-w
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The field of bisociative literature-based discovery aims at mining scientific literature to reveal yet uncovered connections between different fields of specialization. This paper outlines several outlier-based literature mining approaches to bridging term detection and the lessons learned from selected biomedical literature-based discovery applications. The paper addresses also new prospects in bisociative literature-based discovery, proposing an advanced embeddings-based technology for cross-domain literature mining.
引用
收藏
页码:773 / 800
页数:28
相关论文
共 50 条
  • [21] Constructing an associative concept space for literature-based discovery
    van der Eijk, CC
    van Mulligen, EM
    Kors, JA
    Mons, B
    van den Berg, J
    JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY, 2004, 55 (05): : 436 - 444
  • [22] A context-based ABC model for literature-based discovery
    Kim, Yong Hwan
    Song, Min
    PLOS ONE, 2019, 14 (04):
  • [23] Literature-Based Discovery: Critical Analysis and Future Directions
    Ahmed, Ali
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2016, 16 (07): : 11 - 26
  • [24] Literature-based discovery by an enhanced information retrieval model
    Seki, Kazuhiro
    Mostafa, Javed
    DISCOVERY SCIENCE, PROCEEDINGS, 2007, 4755 : 185 - +
  • [25] Who Is Who in Literature-Based Discovery: Preliminary Analysis
    Kastrin, Andrej
    Hristovski, Dimitar
    TRENDS AND APPLICATIONS IN KNOWLEDGE DISCOVERY AND DATA MINING, 2020, 12237 : 51 - 59
  • [26] Application of Literature-Based Discovery in Nonmedical Disciplines: A Survey
    Hui, Wendy
    Lau, Wai Kwong
    2019 2ND INTERNATIONAL CONFERENCE ON COMPUTING AND BIG DATA (ICCBD 2019), 2019, : 7 - 11
  • [27] Improving Literature-Based Discovery with Advanced Text Mining
    Korhonen, Anna
    Guo, Yufan
    Baker, Simon
    Yetisgen-Yildiz, Meliha
    Stenius, Ulla
    Narita, Masashi
    Lio, Pietro
    COMPUTATIONAL INTELLIGENCE METHODS FOR BIOINFORMATICS AND BIOSTATISTICS, CIBB 2014, 2015, 8623 : 89 - 98
  • [28] Neural networks for open and closed Literature-based Discovery
    Crichton, Gamal
    Baker, Simon
    Guo, Yufan
    Korhonen, Anna
    PLOS ONE, 2020, 15 (05):
  • [29] A Critical Survey on Current Literature-Based Discovery Models
    Ahmed, Ali
    Alhashmi, Saadat M.
    CRAFTING GLOBAL COMPETITIVE ECONOMIES: 2020 VISION STRATEGIC PLANNING & SMART IMPLEMENTATION, VOLS I-IV, 2014, : 1383 - 1399
  • [30] Constructing a Graph Database for Semantic Literature-Based Discovery
    Hristovski, Dimitar
    Kastrin, Andrej
    Dinevskr, Dejan
    Rindflesch, Thomas C.
    MEDINFO 2015: EHEALTH-ENABLED HEALTH, 2015, 216 : 1094 - 1094