Euclid in a Taxicab: Sparse Blind Deconvolution with Smoothed l1/l2 Regularization

被引:78
|
作者
Repetti, Audrey [1 ]
Mai Quyen Pham [1 ,2 ]
Duval, Laurent [2 ]
Chouzenoux, Emilie [1 ]
Pesquet, Jean-Christophe [1 ]
机构
[1] Univ Paris Est, LIGM UMR CNRS 8049, F-77454 Champs Sur Marne, France
[2] IFP Energies Nouvelles, F-92500 Rueil Malmaison, France
关键词
Blind deconvolution; nonconvex optimization; norm ratio; preconditioned forward-backward algorithm; seismic data processing; sparsity; smoothed l(1)/l(2) regularization; COORDINATE DESCENT METHOD; NONNEGATIVE MATRIX; FACTORIZATION; CONVERGENCE; SIGNALS;
D O I
10.1109/LSP.2014.2362861
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The l(1)/l(2) ratio regularization function has shown good performance for retrieving sparse signals in a number of recent works, in the context of blind deconvolution. Indeed, it benefits from a scale invariance property much desirable in the blind context. However, the l(1)/l(2) function raises some difficulties when solving the nonconvex and nonsmooth minimization problems resulting from the use of such a penalty term in current restoration methods. In this paper, we propose a new penalty based on a smooth approximation to the l(1)/l(2) function. In addition, we develop a proximal-based algorithm to solve variational problems involving this function and we derive theoretical convergence results. We demonstrate the effectiveness of our method through a comparison with a recent alternating optimization strategy dealing with the exact l(1)/l(2) term, on an application to seismic data blind deconvolution.
引用
收藏
页码:539 / 543
页数:5
相关论文
共 50 条
  • [21] A smoothed monotonic regression via L2 regularization
    Sysoev, Oleg
    Burdakov, Oleg
    KNOWLEDGE AND INFORMATION SYSTEMS, 2019, 59 (01) : 197 - 218
  • [22] Group analysis of fMRI data using L1 and L2 regularization
    Overholser, Rosanna
    Xu, Ronghui
    STATISTICS AND ITS INTERFACE, 2015, 8 (03) : 379 - 390
  • [23] Morozov's Discrepancy Principle For αl1 - βl2 Sparsity Regularization
    Ding, Liang
    Han, Weimin
    INVERSE PROBLEMS AND IMAGING, 2023, 17 (01) : 157 - 179
  • [24] Combined l2 data and gradient fitting in conjunction with l1 regularization
    Didas, Stephan
    Setzer, Simon
    Steidl, Gabriele
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2009, 30 (01) : 79 - 99
  • [25] Sparse SAR imaging based on L1/2 regularization
    ZENG JinShan
    Science China(Information Sciences), 2012, 55 (08) : 1755 - 1775
  • [26] Sparse SAR imaging based on L1/2 regularization
    JinShan Zeng
    Jian Fang
    ZongBen Xu
    Science China Information Sciences, 2012, 55 : 1755 - 1775
  • [27] NONCONVEX L1/2 REGULARIZATION FOR SPARSE PORTFOLIO SELECTION
    Xu, Fengmin
    Wang, Guan
    Gao, Yuelin
    PACIFIC JOURNAL OF OPTIMIZATION, 2014, 10 (01): : 163 - 176
  • [28] Block sparse recovery via mixed l2/l1 minimization
    Jun Hong Lin
    Song Li
    Acta Mathematica Sinica, English Series, 2013, 29 : 1401 - 1412
  • [29] Block Sparse Recovery via Mixed l2/l1 Minimization
    Jun Hong LIN
    Song LI
    Acta Mathematica Sinica,English Series, 2013, (07) : 1401 - 1412
  • [30] WILLETTS 'L1 AND L2'
    CRAIG, R
    DRAMA, 1976, (120): : 72 - 73