Excitation and Amplification of Spin Waves by Spin-Orbit Torque

被引:65
|
作者
Divinskiy, Boris [1 ,2 ]
Demidov, Vladislav E. [1 ,2 ]
Urazhdin, Sergei [3 ]
Freeman, Ryan [3 ]
Rinkevich, Anatoly B. [4 ]
Demokritov, Sergej O. [1 ,2 ,4 ]
机构
[1] Univ Munster, Inst Appl Phys, Correnstr 2-4, D-48149 Munster, Germany
[2] Univ Munster, Ctr Nonlinear Sci, Correnstr 2-4, D-48149 Munster, Germany
[3] Emory Univ, Dept Phys, N220 MSC,400 Dowman Dr, Atlanta, GA 30322 USA
[4] Inst Met Phys UB RAS, 18 S Kovalevslaya St, Ekaterinburg 620108, Russia
基金
美国国家科学基金会;
关键词
spin waves; spin-Hall effect; spin-orbit torques; OSCILLATOR DRIVEN; NANOSCALE; MAGNONICS;
D O I
10.1002/adma.201802837
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The emerging field of nanomagnonics utilizes high-frequency waves of magnetization-spin waves-for the transmission and processing of information on the nanoscale. The advent of spin-transfer torque has spurred significant advances in nanomagnonics, by enabling highly efficient local spin wave generation in magnonic nanodevices. Furthermore, the recent emergence of spin-orbitronics, which utilizes spin-orbit interaction as the source of spin torque, has provided a unique ability to exert spin torque over spatially extended areas of magnonic structures, enabling enhanced spin wave transmission. Here, it is experimentally demonstrated that these advances can be efficiently combined. The same spin-orbit torque mechanism is utilized for the generation of propagating spin waves, and for the long-range enhancement of their propagation, in a single integrated nanomagnonic device. The demonstrated system exhibits a controllable directional asymmetry of spin wave emission, which is highly beneficial for applications in nonreciprocal magnonic logic and neuromorphic computing.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Spin-orbit torque-mediated spin-wave excitation as an alternative paradigm for femtomagnetism
    Zhang, G. P.
    Murakami, M.
    Bai, Y. H.
    George, Thomas F.
    Wu, X. S.
    JOURNAL OF APPLIED PHYSICS, 2019, 126 (10)
  • [22] Multilevel Spin-Orbit Torque MRAMs
    Kim, Yusung
    Fong, Xuanyao
    Kwon, Kon-Woo
    Chen, Mei-Chin
    Roy, Kaushik
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2015, 62 (02) : 561 - 568
  • [23] Giant, Linearly Increasing Spin-Orbit Torque Efficiency in Symmetry-Broken Spin-Orbit Torque Superlattices
    Lin, Xin
    Zhu, Lujun
    Liu, Qianbiao
    Zhu, Lijun
    NANO LETTERS, 2023, 23 (20) : 9420 - 9427
  • [24] Benchmarking of spin-orbit torque vs spin-transfer torque devices
    Kumar, Piyush
    Naeemi, Azad
    APPLIED PHYSICS LETTERS, 2022, 121 (11)
  • [25] Spin valve effect induced by spin-orbit torque switching
    Zhang, R. Q.
    Su, J.
    Cai, J. W.
    Shi, G. Y.
    Li, F.
    Liao, L. Y.
    Pan, F.
    Song, C.
    APPLIED PHYSICS LETTERS, 2019, 114 (09)
  • [26] Efficient micromagnetic modelling of spin-transfer torque and spin-orbit torque
    Abert, Claas
    Bruckner, Florian
    Vogler, Christoph
    Suess, Dieter
    AIP ADVANCES, 2018, 8 (05)
  • [27] Spin-Transfer versus Spin-Orbit Torque MRAM
    Narayanapillai, Kulothungasagaran
    Qiu, Xuepeng
    Wang, Yi
    Kwon, Jaehyun
    Yu, Jiawei
    Loong, Li Ming
    Legrand, William
    Yoon, Jungbum
    Banerjee, Karan
    Yang, Hyunsoo
    7TH IEEE INTERNATIONAL NANOELECTRONICS CONFERENCE (INEC) 2016, 2016,
  • [28] Terahertz spin dynamics driven by an optical spin-orbit torque
    Mondal, Ritwik
    Donges, Andreas
    Nowak, Ulrich
    PHYSICAL REVIEW RESEARCH, 2021, 3 (02):
  • [29] Spin Waves in Cold Gases with the Spin-Orbit Interaction
    Andreeva, T. L.
    Rubin, P. L.
    JETP LETTERS, 2010, 91 (01) : 38 - 39
  • [30] Spin waves in cold gases with the spin-orbit interaction
    T. L. Andreeva
    P. L. Rubin
    JETP Letters, 2010, 91 : 38 - 39