Hybrid photonic crystal cavity and waveguide for coupling to diamond NV-centers

被引:89
|
作者
Barclay, Paul E. [1 ]
Fu, Kai-Mei [1 ]
Santori, Charles [1 ]
Beausoleil, Raymond G. [1 ]
机构
[1] Hewlett Packard Labs, Palo Alto, CA 94304 USA
来源
OPTICS EXPRESS | 2009年 / 17卷 / 12期
关键词
NUCLEAR-SPIN QUBITS; QUALITY FACTOR; Q NANOCAVITY; DESIGN; REFLECTIVITY; MICROCAVITIES;
D O I
10.1364/OE.17.009588
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A design for an ultra-high Q photonic crystal nanocavity engineered to interact with nitrogen-vacancy (NV) centers located near the surface of a single crystal diamond sample is presented. The structure is based upon a nanowire photonic crystal geometry, and consists of a patterned high refractive index thin film, such as gallium phosphide (GaP), supported by a diamond substrate. The nanocavity supports a mode with quality factor Q > 1.5 x 10(6) and mode volume V < 0.52(lambda/n(GaP))(3), and promises to allow Purcell enhanced collection of spontaneous emission from an NV located more than 50 nm below the diamond surface. The nanowire photonic crystal waveguide can be used to efficiently couple light into and out of the cavity, or as an efficient broadband collector of NV phonon sideband emission. The proposed structures can be fabricated using existing materials and processing techniques. (C) 2009 Optical Society of America
引用
收藏
页码:9588 / 9601
页数:14
相关论文
共 50 条
  • [21] Coupling of Nitrogen-Vacancy Centers to Photonic Crystal Cavities in Monocrystalline Diamond
    Faraon, Andrei
    Santori, Charles
    Huang, Zhihong
    Acosta, Victor M.
    Beausoleil, Raymond G.
    PHYSICAL REVIEW LETTERS, 2012, 109 (03)
  • [22] Controlled coupling of NV defect centers to plasmonic and photonic nanostructures
    Barth, Michael
    Schietinger, Stefan
    Schroeder, Tim
    Aichele, Thomas
    Benson, Oliver
    JOURNAL OF LUMINESCENCE, 2010, 130 (09) : 1628 - 1634
  • [23] Hybrid Plasmonic Photonic Crystal Cavity for Enhancing Emission from near-Surface Nitrogen Vacancy Centers in Diamond
    Cui, Shanying
    Zhang, Xingyu
    Liu, Tsung-li
    Lee, Jonathan
    Bracher, David
    Ohno, Kenichi
    Awschalom, David
    Hu, Evelyn L.
    ACS PHOTONICS, 2015, 2 (04): : 465 - 469
  • [24] Efficient Waveguide Coupling of 1D Photonic Crystal Surface Plasmon Coupling Cavity
    Yang, Yue
    Guan, Baolu
    Zhang, Chenglong
    Liu, Lichao
    Liu, Ke
    ICOSM 2020: OPTOELECTRONIC SCIENCE AND MATERIALS, 2020, 11606
  • [25] Coupling of a single tin-vacancy center to a photonic crystal cavity in diamond
    Kuruma, Kazuhiro
    Pingault, Benjamin
    Chia, Cleaven
    Renaud, Dylan
    Hoffmann, Patrick
    Iwamoto, Satoshi
    Ronning, Carsten
    Loncar, Marko
    APPLIED PHYSICS LETTERS, 2021, 118 (23)
  • [26] Emission control of NV centers embedded in an opal photonic crystal
    Stewart, L. A.
    Zhai, Y.
    Steel, M. J.
    Dawes, J. M.
    Rabeau, J. R.
    Withford, M. J.
    2009 CONFERENCE ON LASERS AND ELECTRO-OPTICS AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (CLEO/QELS 2009), VOLS 1-5, 2009, : 3189 - +
  • [27] NV-centers in diamond. Part II. Spectroscopy, spin-state identification, and quantum manipulation
    Tsukanov, A.V.
    Russian Microelectronics, 2012, 41 (03) : 145 - 161
  • [28] Optical coupling between a cavity mode and a waveguide in a two-dimensional photonic crystal
    Nagahara, Ken'ichi
    Morifuji, Masato
    Kondow, Masahiko
    PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS, 2011, 9 (03) : 261 - 268
  • [29] Highly efficient coupling between a monolithically integrated Photonic Crystal Cavity and a Bus Waveguide
    Debnath, Kapil
    Welna, Karl
    Ferrera, Marcello
    Deasy, Kieran
    Lidzey, David
    Krauss, Thomas F.
    O'Faolain, Liam
    INTEGRATED OPTICS: DEVICES, MATERIALS, AND TECHNOLOGIES XVI, 2012, 8264
  • [30] Observation of Coherent Population Trapping in Ensembles of Diamond NV-Centers under Ground-State Level Anticrossing Conditions
    Akhmedzhanov, R. A.
    Zelenskii, I. V.
    Gushchin, L. A.
    Nizov, V. A.
    Nizov, N. A.
    Sobgaida, D. A.
    OPTICS AND SPECTROSCOPY, 2019, 127 (02) : 260 - 264