Existence and learning of oscillations in recurrent neural networks

被引:105
|
作者
Townley, S
Ilchmann, A
Weiss, MG
Mcclements, W
Ruiz, AC
Owens, DH
Prätzel-Wolters, D
机构
[1] Univ Exeter, Sch Math Sci, Exeter EX4 4QE, Devon, England
[2] Univ Kaiserslautern, Graduiertenkolleg Technol Math, D-67663 Kaiserslautern, Germany
[3] Univ Exeter, Ctr Syst & Control Engn, Exeter EX4 4QF, Devon, England
[4] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield S1 3JD, S Yorkshire, England
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2000年 / 11卷 / 01期
基金
英国工程与自然科学研究理事会;
关键词
learning systems; monotone dynamical systems; nonlinear dynamics; recurent neural networks;
D O I
10.1109/72.822523
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we study a particular class of n-node recurrent neural networks (RNN's), In the 3-node case we use monotone dynamical systems theory to show, for a well-defined set of parameters, that, generically, every orbit of the RNN is asymptotic to a periodic orbit. Then we investigate whether RNN's of this class can adapt their internal parameters so as to "learn" and then replicate autonomously tin feedback) certain external periodic signals. Our learning algorithm is similar to identification algorithms in adaptive control theory. The main feature of the algorithm is that global exponential convergence of parameters is guaranteed. We also obtain partial convergence results in the n-node case.
引用
收藏
页码:205 / 214
页数:10
相关论文
共 50 条
  • [21] Learning Question Similarity with Recurrent Neural Networks
    Ye, Borui
    Feng, Guangyu
    Cheriton, David R.
    Cui, Anqi
    Li, Ming
    2017 IEEE INTERNATIONAL CONFERENCE ON BIG KNOWLEDGE (IEEE ICBK 2017), 2017, : 111 - 118
  • [22] Learning and bifurcation diagram of recurrent neural networks
    Sato, S
    Gohara, K
    PROGRESS IN CONNECTIONIST-BASED INFORMATION SYSTEMS, VOLS 1 AND 2, 1998, : 363 - 366
  • [23] A learning algorithm for improved recurrent neural networks
    Chen, CH
    Yu, LW
    1997 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, 1997, : 2198 - 2202
  • [24] Inaccessibility in online learning of recurrent neural networks
    Saito, A
    Taiji, M
    Ikegami, T
    PHYSICAL REVIEW LETTERS, 2004, 93 (16) : 168101 - 1
  • [25] Quantum recurrent neural networks for sequential learning
    Li, Yanan
    Wang, Zhimin
    Han, Rongbing
    Shi, Shangshang
    Li, Jiaxin
    Shang, Ruimin
    Zheng, Haiyong
    Zhong, Guoqiang
    Gu, Yongjian
    NEURAL NETWORKS, 2023, 166 : 148 - 161
  • [26] Learning minimal automata with recurrent neural networks
    Aichernig, Bernhard K.
    Koenig, Sandra
    Mateis, Cristinel
    Pferscher, Andrea
    Tappler, Martin
    SOFTWARE AND SYSTEMS MODELING, 2024, 23 (03): : 625 - 655
  • [28] A CONVERGENCE RESULT FOR LEARNING IN RECURRENT NEURAL NETWORKS
    KUAN, CM
    HORNIK, K
    WHITE, H
    NEURAL COMPUTATION, 1994, 6 (03) : 420 - 440
  • [29] Learning Morphological Transformations with Recurrent Neural Networks
    Biswas, Saurav
    Breuel, Thomas
    INNS CONFERENCE ON BIG DATA 2015 PROGRAM, 2015, 53 : 335 - 344
  • [30] Learning Multiple Timescales in Recurrent Neural Networks
    Alpay, Tayfun
    Heinrich, Stefan
    Wermter, Stefan
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2016, PT I, 2016, 9886 : 132 - 139