Optogenetic control of gut bacterial metabolism to promote longevity

被引:57
|
作者
Hartsough, Lucas A. [1 ]
Park, Mooncheol [2 ]
Kotlajich, Matthew, V [1 ]
Lazar, John Tyler [3 ]
Han, Bing [2 ]
Lin, Chih-Chun J. [2 ,4 ]
Musteata, Elena [5 ]
Gambill, Lauren [5 ]
Wang, Meng C. [2 ,4 ,6 ]
Tabor, Jeffrey J. [1 ,5 ,7 ]
机构
[1] Dept Bioengn, Houston, TX 77030 USA
[2] Huffington Ctr Aging, Houston, TX 77030 USA
[3] Dept Chem & Biomol Engn, Houston, TX USA
[4] Baylor Coll Med, Dept Mol & Human Genet, Houston, TX 77030 USA
[5] Rice Univ, Syst Synthet & Phys Biol Program, Houston, TX 77005 USA
[6] Howard Hughes Med Inst, Houston, TX 77030 USA
[7] Dept Biosci, Houston, TX 77251 USA
来源
ELIFE | 2020年 / 9卷
基金
美国国家科学基金会; 美国国家卫生研究院; 美国国家航空航天局;
关键词
ESCHERICHIA-COLI; GENE-EXPRESSION; LIGHT; MICROBIOTA; SYSTEMS; DYNAMICS; ELEGANS; FOLATE; TOOL;
D O I
10.7554/eLife.56849
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Gut microbial metabolism is associated with host longevity. However, because it requires direct manipulation of microbial metabolism in situ, establishing a causal link between these two processes remains challenging. We demonstrate an optogenetic method to control gene expression and metabolite production from bacteria residing in the host gut. We genetically engineer an Escherichia coli strain that secretes colanic acid (CA) under the quantitative control of light. Using this optogenetically-controlled strain to induce CA production directly in the Caenorhabditis elegans gut, we reveal the local effect of CA in protecting intestinal mitochondria from stress-induced hyper-fragmentation. We also demonstrate that the lifespan-extending effect of this strain is positively correlated with the intensity of green light, indicating a dose-dependent CA benefit on the host. Thus, optogenetics can be used to achieve quantitative and temporal control of gut bacterial metabolism in order to reveal its local and systemic effects on host health and aging.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Gut bacterial metabolism produces neuroactive steroids in pregnant women
    Huus, Kelsey E.
    Ley, Ruth E.
    LIFE METABOLISM, 2024, 3 (06):
  • [32] Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism
    Rekdal, Vayu Maini
    Bess, Elizabeth N.
    Bisanz, Jordan E.
    Turnbaugh, Peter J.
    Balskus, Emily P.
    SCIENCE, 2019, 364 (6445) : 1055 - +
  • [33] Mechanisms of gut bacterial metabolism of dietary polyphenols into bioactive compounds
    Alqudah, Sara
    Claesen, Jan
    GUT MICROBES, 2024, 16 (01)
  • [34] Bacterial symbiosis in the fish gut and its role in health and metabolism
    Goutam Banerjee
    Arun Kumar Ray
    Symbiosis, 2017, 72 : 1 - 11
  • [35] Gut bacterial metabolism contributes to host global purine homeostasis
    Kasahara, Kazuyuki
    Kerby, Robert L.
    Zhang, Qijun
    Pradhan, Meenakshi
    Mehrabian, Margarete
    Lusis, Aldons J.
    Bergstrom, Goran
    Backhed, Fredrik
    Rey, Federico E.
    CELL HOST & MICROBE, 2023, 31 (06) : 1038 - +
  • [36] Bacterial symbiosis in the fish gut and its role in health and metabolism
    Banerjee, Goutam
    Ray, Arun Kumar
    SYMBIOSIS, 2017, 72 (01) : 1 - 11
  • [37] Control of bacterial metabolism by quorum sensing
    Goo, Eunhye
    An, Jae Hyung
    Kang, Yongsung
    Hwang, Ingyu
    TRENDS IN MICROBIOLOGY, 2015, 23 (09) : 567 - 576
  • [38] Bacterial Metabolism under FHA Control
    Bellinzoni, Marco
    Alzari, Pedro M.
    STRUCTURE, 2009, 17 (04) : 487 - 488
  • [39] How Gut and Brain Control Metabolism Foreword
    Gautron, Laurent
    Elmquist, Joel K.
    HOW GUT AND BRAIN CONTROL METABOLISM, 2014, 42 : VII - VIII
  • [40] How Gut and Brain Control Metabolism Preface
    Delhanty, Patric J. D.
    van der Lely, Aart J.
    HOW GUT AND BRAIN CONTROL METABOLISM, 2014, 42 : IX - IX