Single-Particle Dichroism Using Orbital Angular Momentum in a Microwave Plasmonic Resonator

被引:30
|
作者
Zhang, Xuanru [1 ]
Cui, Tie Jun [1 ]
机构
[1] Southeast Univ, State Key Lab Millimeter Waves, Nanjing 210096, Peoples R China
来源
ACS PHOTONICS | 2020年 / 7卷 / 12期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
chirality; microwave vortex; orbital angular momentum (OAM); single-molecule dichroism; CIRCULAR-DICHROISM; CHIROPTICAL RESPONSE; SURFACE; METAMATERIAL; BEHAVIOR; LIGHT;
D O I
10.1021/acsphotonics.0c01139
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Dichroism measurement is mostly restricted to extensive numbers of molecules due to weak response from a single deep-subwavelength particle, and hence single-molecule dichroism is of essential importance for the in-depth study of enantiomers. This paper reports the dichroism capability of a single chiral particle within the diameter of 1/150 wavelengths and smaller, using sharp resonance dips of confined orbital angular momentum (OAM) modes, which are ultrasensitive to disturbance from chiral particles. The OAM modes are realized in a microwave plasmonic resonator via chiral symmetry breaking in the structure. Full-wave simulations and OAM density analysis of the resonant modes confirm the single-particle dichroism principle. Experimental results agree well with the simulations. The principle is demonstrated in the microwave frequency for convenient manipulations and intensive investigations, while it envisions ground-breaking applications of the confined OAM modes in on-chip single-molecule dichroism in the optical frequency range.
引用
收藏
页码:5291 / 5297
页数:7
相关论文
共 50 条
  • [31] Transfer of orbital angular momentum of light to plasmonic excitations in metamaterials
    Arikawa, T.
    Hiraoka, T.
    Morimoto, S.
    Blanchard, F.
    Tani, S.
    Tanaka, T.
    Sakai, K.
    Kitajima, H.
    Sasaki, K.
    Tanaka, K.
    SCIENCE ADVANCES, 2020, 6 (24):
  • [32] Ultrafast Time Dynamics of Plasmonic Fractional Orbital Angular Momentum
    Bauer, Thomas
    Davis, Timothy J.
    Frank, Bettina
    Dreher, Pascal
    Janoschka, David
    Meiler, Tim C.
    zu Heringdorf, Frank-J. Meyer
    Kuipers, L.
    Giessen, Harald
    ACS PHOTONICS, 2023, 10 (12) : 4252 - 4258
  • [33] Detection of Orbital Angular Momentum With Metasurface at Microwave Band
    Chen, Menglin L. N.
    Jiang, Li Jun
    Sha, Wei E. I.
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2018, 17 (01): : 110 - 113
  • [34] Orbital Angular Momentum and Virtual Experiments for Microwave Imaging
    Di Donato, L.
    Bevacqua, M. T.
    Morabito, A. F.
    Isernia, T.
    2019 PHOTONICS & ELECTROMAGNETICS RESEARCH SYMPOSIUM - SPRING (PIERS-SPRING), 2019, : 560 - 565
  • [35] Microwave-induced orbital angular momentum transfer
    Zahra Amini Sabegh
    Mohammad Ali Maleki
    Mohammad Mahmoudi
    Scientific Reports, 9
  • [36] Generation of light beams carrying orbital angular momentum using an ultrathin plasmonic metasurface
    De Leon, Israel
    Karimi, Ebrahim
    Schulz, Sebastian A.
    Qassim, Hammam
    Upham, Jeremy
    Boyd, Robert W.
    2014 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2014,
  • [37] Metalens in Microwave Region for the Generation of Orbital Angular Momentum
    Zhang, Kuang
    Yuan, Yueyi
    Wu, Qun
    2018 JOINT IEEE INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY AND 2018 IEEE ASIA-PACIFIC SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY (EMC/APEMC), 2018, : 129 - 129
  • [38] Microwave-induced orbital angular momentum transfer
    Sabegh, Zahra Amini
    Maleki, Mohammad Ali
    Mahmoudi, Mohammad
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [39] MICROWAVE SENSING TECHNOLOGY USING ORBITAL ANGULAR MOMENTUM Overview of Its Advantages
    Liu, Kang
    Cheng, Yongqiang
    Li, Xiang
    Gao, Yue
    IEEE VEHICULAR TECHNOLOGY MAGAZINE, 2019, 14 (02): : 112 - 118
  • [40] Microwave Orbital Angular Momentum Mode Multiplexing Using Circular Slot Antenna
    Zhang, Zixiao
    Gui, Liangqi
    Liu, Dandan
    Chen, Han
    2018 JOINT IEEE INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY AND 2018 IEEE ASIA-PACIFIC SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY (EMC/APEMC), 2018, : 1077 - 1080