We determine the number omega(G) of orbits on the (finite) group G under the action of Aut(G) for G is an element of { PSL(2, q), SL(2, q), PSL(3,3),Sz(2(2m+1))}, covering all of the minimal simple groups as well as all of the simple Zassenhaus groups. This leads to recursive formulae on the one hand, and to the equation omega(Sz(q)) = omega(PSL(2, q)) + 2 on the other.
机构:
Babes Bolyai Univ, Fac Math & Comp Sci, Str Kogalniceanu 1, Cluj Napoca 405300, RomaniaBabes Bolyai Univ, Fac Math & Comp Sci, Str Kogalniceanu 1, Cluj Napoca 405300, Romania
Andrica, Dorin
Radulescu, Sorin
论文数: 0引用数: 0
h-index: 0
机构:
Inst Math Stat & Appl Math, Calea 13 Septembrie 13, Bucharest 050711, RomaniaBabes Bolyai Univ, Fac Math & Comp Sci, Str Kogalniceanu 1, Cluj Napoca 405300, Romania
Radulescu, Sorin
Turcas, George C.
论文数: 0引用数: 0
h-index: 0
机构:
Babes Bolyai Univ, Fac Math & Comp Sci, Str Kogalniceanu 1, Cluj Napoca 405300, Romania
Romanian Acad, Inst Math Simion Stoilow, POB 1-764, RO-014700 Bucharest, RomaniaBabes Bolyai Univ, Fac Math & Comp Sci, Str Kogalniceanu 1, Cluj Napoca 405300, Romania
Turcas, George C.
AMERICAN MATHEMATICAL MONTHLY,
2021,
128
(02):
: 168
-
173