Counting the orbits on finite simple groups under the action of the automorphism group - Suzuki groups vs. linear groups

被引:6
|
作者
Kohl, S [1 ]
机构
[1] Univ Stuttgart, Math Inst, D-70550 Stuttgart, Germany
关键词
D O I
10.1081/AGB-120004501
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine the number omega(G) of orbits on the (finite) group G under the action of Aut(G) for G is an element of { PSL(2, q), SL(2, q), PSL(3,3),Sz(2(2m+1))}, covering all of the minimal simple groups as well as all of the simple Zassenhaus groups. This leads to recursive formulae on the one hand, and to the equation omega(Sz(q)) = omega(PSL(2, q)) + 2 on the other.
引用
收藏
页码:3515 / 3532
页数:18
相关论文
共 50 条
  • [1] Automorphism group orbits on finite simple groups
    Jafari, Leyli
    Kohl, Stefan
    O'Brien, E. A.
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (08) : 3294 - 3300
  • [2] Classifying finite simple groups with respect to the number of orbits under the action of the automorphism group
    Kohl, S
    COMMUNICATIONS IN ALGEBRA, 2004, 32 (12) : 4785 - 4794
  • [3] Serial Group Rings of Finite Groups. Sporadic Simple Groups and Suzuki Groups
    Kukharev A.V.
    Puninski G.E.
    Journal of Mathematical Sciences, 2016, 219 (4) : 539 - 552
  • [4] ON FINITE GROUPS WITH FEW AUTOMORPHISM ORBITS
    Bastos, Raimundo
    Dantas, Alex Carrazedo
    COMMUNICATIONS IN ALGEBRA, 2016, 44 (07) : 2953 - 2958
  • [5] AUTOMORPHISM ORBITS OF FINITE-GROUPS
    LAFFEY, TJ
    MACHALE, D
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1986, 40 : 253 - 260
  • [6] On the automorphism groups of Cayley graphs of finite simple groups
    Fang, XG
    Praeger, CE
    Wang, J
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2002, 66 : 563 - 578
  • [7] Finite simple 3′-groups are cyclic or Suzuki groups
    Toborg, Imke
    Waldecker, Rebecca
    ARCHIV DER MATHEMATIK, 2014, 102 (04) : 301 - 312
  • [8] Finite simple 3′-groups are cyclic or Suzuki groups
    Imke Toborg
    Rebecca Waldecker
    Archiv der Mathematik, 2014, 102 : 301 - 312
  • [9] Finite groups with six or seven automorphism orbits
    Dantas, Alex Carrazedo
    Garonzi, Martino
    Bastos, Raimundo
    JOURNAL OF GROUP THEORY, 2017, 20 (05) : 945 - 954
  • [10] Finite groups with only small automorphism orbits
    Bors, Alexander
    JOURNAL OF GROUP THEORY, 2020, 23 (04) : 659 - 696