Overexpression of a Lotus corniculatus AP2/ERF transcription factor gene, LcERF080, enhances tolerance to salt stress in transgenic Arabidopsis

被引:11
|
作者
Sun, Zhan-Min [1 ,2 ]
Zhou, Mei-Liang [1 ]
Xiao, Xing-Guo [2 ]
Tang, Yi-Xiong [1 ]
Wu, Yan-Min [1 ]
机构
[1] CAAS, Biotechnol Res Inst, Beijing 100081, Peoples R China
[2] China Agr Univ, Coll Biol Sci, State Key Lab Plant Physiol & Biochem, Beijing 100094, Peoples R China
基金
中国国家自然科学基金;
关键词
AP2/ERF; L. corniculatus cv. Leo; Overexpression; Salt stress; ETHYLENE-RESPONSE FACTOR; CIS-ACTING ELEMENTS; NUCLEAR-LOCALIZATION; ABSCISIC-ACID; P5CS GENES; EXPRESSION; DROUGHT; DEHYDRATION; PROLINE; FAMILY;
D O I
10.1007/s11816-014-0323-6
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The APETALA2/ethylene-responsive element binding factors (AP2/ERF) play central roles in the stress response in plants. In this study, we identified and isolated a novel salt stress-related gene, LcERF080, that encodes an AP2/ERF protein in Lotus corniculatus cultivar Leo. LcERF080 was classified into the B-4 group of the ERF subfamily based on multiple sequence alignment and phylogenetic characterization. Expression of LcERF080 was strongly induced by salt, abscisic acid, 1-aminocyclopropane-1-carboxylic acid, methyl jasmonate, and salicylic acid stresses. Subcellular localization assay confirmed that LcERF080 is a nuclear protein. LcERF080 overexpression in Arabidopsis resulted in pleiotropic phenotypes with a higher seed germination rate and transgenic plants with enhanced tolerance to salt stress. Further, under stress conditions, the transgenic lines exhibited elevated levels of soluble sugars and proline as well as relative moisture contents but a lower malondialdehyde content than in control plants. The expression levels of hyperosmotic salinity response genes COR15A, RD22, and P5CS1 were found to be elevated in the LcERF080-overexpressing Arabidopsis plants compared to the wild-type plants. These results reveal that LcERF080 is involved in the responses of plants to salt stress.
引用
收藏
页码:315 / 324
页数:10
相关论文
共 50 条
  • [41] Overexpression of cotton GhNAC072 gene enhances drought and salt stress tolerance in transgenic Arabidopsis
    Teame Gereziher Mehari
    Yuqing Hou
    Yanchao Xu
    Muhammad Jawad Umer
    Margaret Linyerera Shiraku
    Yuhong Wang
    Heng Wang
    Renhai Peng
    Yangyang Wei
    Xiaoyan Cai
    Zhongli Zhou
    Fang Liu
    BMC Genomics, 23
  • [42] Overexpression of cotton GhNAC072 gene enhances drought and salt stress tolerance in transgenic Arabidopsis
    Mehari, Teame Gereziher
    Hou, Yuqing
    Xu, Yanchao
    Umer, Muhammad Jawad
    Shiraku, Margaret Linyerera
    Wang, Yuhong
    Wang, Heng
    Peng, Renhai
    Wei, Yangyang
    Cai, Xiaoyan
    Zhou, Zhongli
    Liu, Fang
    BMC GENOMICS, 2022, 23 (01)
  • [43] The AP2/ERF Transcription Factor WIND1 Controls Cell Dedifferentiation in Arabidopsis
    Iwase, Akira
    Mitsuda, Nobutaka
    Koyama, Tomotsugu
    Hiratsu, Keiichiro
    Kojima, Mikiko
    Arai, Takashi
    Inoue, Yasunori
    Seki, Motoaki
    Sakakibara, Hitoshi
    Sugimoto, Keiko
    Ohme-Takagi, Masaru
    CURRENT BIOLOGY, 2011, 21 (06) : 508 - 514
  • [44] Overexpression of a Cotton Gene That Encodes a Putative Transcription Factor of AP2/EREBP Family in Arabidopsis Affects Growth and Development of Transgenic Plants
    Zhou, Ying
    Xia, Hui
    Li, Xiao-Jie
    Hu, Rong
    Chen, Yun
    Li, Xue-Bao
    PLOS ONE, 2013, 8 (10):
  • [45] Overexpression of HcSCL13, a Halostachys caspica GRAS transcription factor, enhances plant growth and salt stress tolerance in transgenic Arabidopsis
    Zhang, Sheng
    Li, Xuewen
    Fan, Shoude
    Zhou, Lianjie
    Wang, Yan
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2020, 151 : 243 - 254
  • [46] Overexpression of a tomato AP2/ERF transcription factor SlERF.B1 increases sensitivity to salt and drought stresses
    Wang, Yuqin
    Xia, Dongnan
    Li, Wenqi
    Cao, Xiaoyu
    Ma, Fang
    Wang, Qiqi
    Zhan, Xiangqiang
    Hu, Tixu
    SCIENTIA HORTICULTURAE, 2022, 304
  • [47] The Halophyte Halostachys caspica AP2/ERF Transcription Factor HcTOE3 Positively Regulates Freezing Tolerance in Arabidopsis
    Yin, Fangliu
    Zeng, Youling
    Ji, Jieyun
    Wang, Pengju
    Zhang, Yufang
    Li, Wenhui
    FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [48] The AP2/ERF transcription factor MhERF113-like positively regulates drought tolerance in transgenic tomato and apple
    Tian, Jianwen
    Yuan, Penghao
    Gao, Xiang
    Wang, Hongtao
    Wang, Miaomiao
    Zhang, Kunxi
    Hao, Pengbo
    Song, Chunhui
    Zheng, Xianbo
    Bai, Tuanhui
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2025, 221
  • [49] AP2/ERF Transcription Factors for Tolerance to Both Biotic and Abiotic Stress Factors in Plants
    Shuming Nie
    Dan Wang
    Tropical Plant Biology, 2023, 16 : 105 - 112
  • [50] AP2/ERF Transcription Factors for Tolerance to Both Biotic and Abiotic Stress Factors in Plants
    Nie, Shuming
    Wang, Dan
    TROPICAL PLANT BIOLOGY, 2023, 16 (03) : 105 - 112