Willow-Leaf-Like ZnSe@N-Doped Carbon Nanoarchitecture as a Stable and High-Performance Anode Material for Sodium-Ion and Potassium-Ion Batteries

被引:142
|
作者
Dong, Caifu [1 ]
Wu, Leqiang [1 ]
He, Yanyan [2 ]
Zhou, Yanli [1 ]
Sun, Xiuping [3 ]
Du, Wei [1 ]
Sun, Xueqin [1 ]
Xu, Liqiang [3 ]
Jiang, Fuyi [1 ]
机构
[1] Yantai Univ, Sch Environm & Mat Engn, Yantai 264005, Peoples R China
[2] Qilu Univ Technol, Shandong Acad Sci, Sch Chem & Pharmaceut Engn, Key Lab Fine Chem Univ Shandong, Jinan 250353, Peoples R China
[3] Shandong Univ, Sch Chem & Chem Engn, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
long cycle life; potassium‐ ion batteries; sodium‐ willow‐ leaf‐ like composites; ZnSe; NANOPARTICLES; NANOSHEETS; COMPOSITE; NANOFIBERS; HYBRID;
D O I
10.1002/smll.202004580
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
ZnSe is regarded as a promising anode material for energy storage due to its high theoretical capacity and environment friendliness. Nevertheless, it is still a significant challenge to obtain superior electrode materials with stable performance owing to the serious volume change and aggregation upon cycling. Herein, a willow-leaf-like nitrogen-doped carbon-coated ZnSe (ZnSe@NC) composite synthesized through facile solvothermal and subsequent selenization process is beneficial to expose more active sites and facilitate the fast electron/ion transmission. These merits significantly enhance the electrochemical performances of ZnSe@NC for sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs). The obtained ZnSe@NC exhibits outstanding rate performance (440.3 mAh g(-1) at 0.1 A g(-1) and 144.4 mAh g(-1) at 10 A g(-1)) and ultralong cycle stability (242.2 mAh g(-1) at 8.0 A g(-1) even after 3200 cycles) for SIBs. It is noted that 106.5 mAh g(-1) can be retained after 550 cycles and 71.4 mAh g(-1) is still remained after 1500 cycles at 200 mA g(-1) when applied as anode for PIBs, indicating good cycle stability of the electrode. The possible electrochemical mechanism and the ionic diffusion kinetics of the ZnSe@NC are investigated using ex situ X-ray diffraction, high-resolution transmission electron microscopy, and a series of electrochemical analyses.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Flower-like NiS/C as high-performance anode material for sodium-ion batteries
    Xia, Guanghui
    Li, Xuebao
    Gu, Yang
    Dong, Peng
    Zhang, Yiyong
    Duan, Jianguo
    Wang, Ding
    Zhang, Yingjie
    IONICS, 2021, 27 (01) : 191 - 197
  • [22] Flower-like NiS/C as high-performance anode material for sodium-ion batteries
    Guanghui Xia
    Xuebao Li
    Yang Gu
    Peng Dong
    Yiyong Zhang
    Jianguo Duan
    Ding Wang
    Yingjie Zhang
    Ionics, 2021, 27 : 191 - 197
  • [23] N-Doped Biomass Carbon/Reduced Graphene Oxide as a High-Performance Anode for Sodium-Ion Batteries
    Dan, Ruiqi
    Chen, Weimin
    Xiao, Zhuangwei
    Li, Pan
    Liu, Mingming
    Chen, Zhigao
    Yu, Faquan
    ENERGY & FUELS, 2020, 34 (03) : 3923 - 3930
  • [24] Nitrogen-Rich Mesoporous Carbon as Anode Material for High-Performance Sodium-Ion Batteries
    Liu, Huan
    Jia, Mengqiu
    Sun, Ning
    Cao, Bin
    Chen, Renjie
    Zhu, Qizhen
    Wu, Feng
    Qiao, Ning
    Xu, Bin
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (49) : 27124 - 27130
  • [25] A waste biomass derived hard carbon as a high-performance anode material for sodium-ion batteries
    Liu, Pin
    Li, Yunming
    Hu, Yong-Sheng
    Li, Hong
    Chen, Liquan
    Huang, Xuejie
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (34) : 13046 - 13052
  • [26] Preparation of N-doped potassium-intercalated copper sulfide for high-performance potassium-ion and sodium-ion supercapacitors
    Tian, Fang
    Li, Hui
    Yao, Ranran
    Wu, Jiaxin
    Zhang, Sainan
    Yao, Decui
    Yang, Zibo
    JOURNAL OF POWER SOURCES, 2025, 635
  • [27] Flaky N-doped hard carbon anode material for sodium-ion batteries
    Zhang, Kai-Yang
    Fu, Yan-Qiu
    Liu, Han-Hao
    Yang, Jia-Lin
    Su, Meng-Yuan
    Wang, Yinglin
    Wu, Xing-Long
    PHYSICA SCRIPTA, 2023, 98 (12)
  • [28] Highly Nitrogen-Doped Porous Carbon Nanosheets as High-Performance Anode for Potassium-Ion Batteries
    Zhang, Dong Mei
    Chen, Zhi Wen
    Bai, Jie
    Yang, Chun Cheng
    Jiang, Qing
    BATTERIES & SUPERCAPS, 2020, 3 (02) : 185 - 193
  • [29] Sulfur-doped carbon nanofibers as stable and high performance anode materials for sodium-ion batteries
    Lu, Mengwei
    Huang, Ying
    Du, Xianping
    Sheng, Xitong
    SUSTAINABLE ENERGY & FUELS, 2024, 8 (14): : 3056 - 3064
  • [30] A Stable Three-Dimensional Porous Carbon as a High-Performance Anode Material for Lithium, Sodium, and Potassium Ion Batteries
    Younis, Umer
    Qayyum, Fizzah
    Muhammad, Imran
    Yaseen, Muhammad
    Sun, Qiang
    ADVANCED THEORY AND SIMULATIONS, 2022, 5 (09)