The survival probability of critical and subcritical branching processes in finite state space Markovian environment

被引:4
|
作者
Grama, Ion [1 ]
Lauvergnat, Ronan [1 ]
Le Page, Emile [1 ]
机构
[1] Univ Bretagne Sud, CNRS, UMR 6205, LMBA, Vannes, France
关键词
Critical and subcritical branching process; Random environment; Markov chain; Survival probability; LIMIT-THEOREMS;
D O I
10.1016/j.spa.2018.07.016
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let (Z(n))(n >=)(0) be a branching process in a random environment defined by a Markov chain (X-n)(n >= 0) with values in a finite state space X. Let P-i be the probability law generated by the trajectories of (X-n)(n >= 0) starting at X-0 = i is an element of X. We study the asymptotic behaviour of the joint survival probability P-i (Z(n) > 0, X-n = j), j is an element of X as n -> +infinity in the critical and strongly, intermediate and weakly subcritical cases. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:2485 / 2527
页数:43
相关论文
共 50 条
  • [41] Limit Theorems for Weakly Subcritical Branching Processes in Random Environment
    Afanasyev, V. I.
    Boeinghoff, C.
    Kersting, G.
    Vatutin, V. A.
    JOURNAL OF THEORETICAL PROBABILITY, 2012, 25 (03) : 703 - 732
  • [42] THE SURVIVAL PROBABILITY OF A CRITICAL MULTI-TYPE BRANCHING PROCESS IN IID RANDOM ENVIRONMENT
    Le Page, E.
    Peigne, M.
    Pham, C.
    ANNALS OF PROBABILITY, 2018, 46 (05): : 2946 - 2972
  • [43] Subcritical branching processes in a random environment without the Cramer condition
    Vatutin, Vladimir
    Zheng, Xinghua
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2012, 122 (07) : 2594 - 2609
  • [44] Critical branching Brownian motion with absorption: survival probability
    Julien Berestycki
    Nathanaël Berestycki
    Jason Schweinsberg
    Probability Theory and Related Fields, 2014, 160 : 489 - 520
  • [45] Critical branching Brownian motion with absorption: survival probability
    Berestycki, Julien
    Berestycki, Nathanael
    Schweinsberg, Jason
    PROBABILITY THEORY AND RELATED FIELDS, 2014, 160 (3-4) : 489 - 520
  • [46] Extreme values of critical and subcritical branching stable processes with positive jumps
    Profeta, Christophe
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2022, 19 : 1421 - 1433
  • [47] Functional limit theorems for strongly subcritical branching processes in random environment
    Afanasyev, VI
    Geiger, J
    Kersting, G
    Vatutin, VA
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2005, 115 (10) : 1658 - 1676
  • [48] Conditional limit theorems for intermediately subcritical branching processes in random environment
    Afanasyev, V. I.
    Boeinghoff, Ch.
    Kersting, G.
    Vatutin, V. A.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2014, 50 (02): : 602 - 627
  • [49] Reduced critical branching processes in random environment
    Stoch. Processes Appl., 2 (225-240):
  • [50] Critical multitype branching processes in a random environment
    Dyakonova, E. E.
    DISCRETE MATHEMATICS AND APPLICATIONS, 2007, 17 (06): : 587 - 606