Effect of AL2O3 and TiO2 nanoparticles on aquatic organisms

被引:4
|
作者
Gosteva, I. [1 ]
Morgalev, Yu [1 ]
Morgaleva, T. [1 ]
Morgalev, S. [1 ]
机构
[1] Tomsk State Univ, Ctr Biotest Nano, Tomsk 634050, Russia
关键词
DAPHNIA-MAGNA; ZNO; TOXICITY; WATER; CUO; SIO2;
D O I
10.1088/1757-899X/98/1/012007
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Environmental toxicity of aqueous disperse systems of nanoparticles of binary compounds of titanium dioxides (with particle size Delta(50)=5 nm, Delta(50)=50 nm, Delta(50)=90 nm), aluminum oxide alpha-forms (Delta(50)=7 nm and Delta(50)=70 nm) and macro forms (TiO2 Delta(50)=350 nm, Al2O3 Delta(50)=4000 nm) were studied using biological testing methods. The bioassay was performed using a set of test organisms representing the major trophic levels. We found the dependence of the toxic effect concentration degree of nTiO(2) and nAl(2)O(3) on the fluorescence of the bacterial biosensor "Ekolyum", the chemotactic response of ciliates Paramecium caudatum, the growth of unicellular algae Chlorella vulgaris Beijer and mortality of entomostracans Daphnia magna Straus. We revealed the selective dependence of nTiO(2) and nAl(2)O(3) toxicity on the size, concentration and chemical nature of nanoparticles. The minimal concentration causing an organism's response on nTiO(2) and nAl(2)O(3) effect depends on the type of the test-organism and the test reaction under study. We specified L(E) Delta(50) and acute toxicity categories for all the studied nanoparticles. We determined that nTiO(2) (Delta(50)=5 nm) belong to the category "Acute toxicity 1", nTiO(2) (Delta(50)=90 nm) and nAl(2)O(3) (Delta(50)=70 nm) - to the category "Acute toxicity 2", nAl(2)O(3) (Delta(50)=7 nm) - to the category "Acute toxicity 3". No acute toxicity was registered for nTiO(2) (Delta(50)=50 nm) and macro form TiO2.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Growth habit of TiO2 and α-Al2O3 crystals
    Li, WJ
    Zheng, YQ
    Shi, EW
    Chen, ZZ
    Yin, ZW
    JOURNAL OF INORGANIC MATERIALS, 2000, 15 (06) : 968 - 976
  • [32] STRENGTH MICROSTRUCTURE RELATION IN AL2O3 AND TIO2
    ALFORD, NM
    KENDALL, K
    CLEGG, WJ
    BIRCHALL, JD
    ADVANCED CERAMIC MATERIALS, 1988, 3 (02): : 113 - 117
  • [33] Effect of TiO2, Al2O3, and Fe3O4 Nanoparticles on Phosphorus Removal from Aqueous Solution
    Moharami, Somayeh
    Jalali, Mohsen
    ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2014, 33 (04) : 1209 - 1219
  • [34] Synthesis and characterization of Al2O3/ZrO2, Al2O3/TiO2 and Al2O3/ZrO2/TiO2 ceramic composite particles prepared by ultrasonic spray pyrolysis
    Shim, IS
    Lee, CS
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2002, 23 (08) : 1127 - 1134
  • [35] Towards More Efficient Refrigeration: A Study on the Use of TiO2 and Al2O3 Nanoparticles
    Yousif, Sura S.
    Al-Obaidi, Mudhar A.
    Al-Muhsen, Nizar F. O.
    INTERNATIONAL JOURNAL OF HEAT AND TECHNOLOGY, 2024, 42 (04) : 1251 - 1256
  • [36] Attachment Chemistry of 4-Fluorophenylboronic Acid on TiO2 and Al2O3 Nanoparticles
    Byron, Carly
    Silva-Quinones, Dhamelyz
    Sarkar, Sucharita
    Brown, Scott C.
    Bai, Shi
    Quinn, Caitlin M.
    Grzenda, Zachary
    Chinn, Mitchell S.
    Teplyakov, Andrew V.
    CHEMISTRY OF MATERIALS, 2022, 34 (23) : 10659 - 10669
  • [37] Radiolysis of aqueous 4-nitrophenol solution with Al2O3 or TiO2 nanoparticles
    Follut, F.
    Leitner, N. Karpel Vel
    CHEMOSPHERE, 2007, 66 (11) : 2114 - 2119
  • [39] Radiolysis of aqueous phenol solution dispersing Al2O3, TiO2 or Fe2O3 nanoparticles
    Follut, F.
    Leitner, N. Karpel Vel
    JOURNAL OF ADVANCED OXIDATION TECHNOLOGIES, 2007, 10 (01) : 121 - 126
  • [40] Nanoreinforced Cast Al-Si Alloys with Al2O3, TiO2 and ZrO2 Nanoparticles
    El-Mahallawi, Iman S.
    Shash, Ahmed Yehia
    Amer, Amer Eid
    METALS, 2015, 5 (02): : 802 - 821