Determination of uncertainties in energy and exergy analysis of a power plant

被引:16
|
作者
Ege, Ahmet [1 ]
Sahin, Haci Mehmet [2 ]
机构
[1] Elect Generat Co, Dept Nucl Power Plants, TR-06520 Ankara, Turkey
[2] Gazi Univ, Fac Technol, TR-06503 Ankara, Turkey
关键词
Thermal power plant; Exergy; Uncertainty; Sensitivity; Efficiency; Energy;
D O I
10.1016/j.enconman.2014.05.088
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this study, energy and exergy efficiency uncertainties of a large scale lignite fired power plant cycle and various measurement parameter sensitivities were investigated for five different design power outputs (100%, 85%, 80%, 60% and 40%) and with real data of the plant. For that purpose a black box method was employed considering coal flow with Lower Heating Value (LHV) as a single input and electricity produced as a single output of the plant. The uncertainty of energy and exergy efficiency of the plant was evaluated with this method by applying sensitivity analysis depending on the effect of measurement parameters such as LHV, coal mass flow rate, cell generator output voltage/current. In addition, an extreme case analysis was investigated to determine the maximum range of the uncertainties. Results of the black box method showed that uncertainties varied between 1.82-1.98% for energy efficiency and 1.32-1.43% for exergy efficiency of the plant at an operating power level of 40-100% of full power. It was concluded that LHV determination was the most important uncertainty source of energy and exergy efficiency of the plant. The uncertainties of the extreme case analysis were determined between 2.30% and 2.36% for energy efficiency while 1.66% and 1.70% for exergy efficiency for 40-100% power output respectively. Proposed method was shown to be an approach for understanding major uncertainties as well as effects of some measurement parameters in a large scale thermal power plant. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:399 / 406
页数:8
相关论文
共 50 条
  • [1] ENERGY AND EXERGY ANALYSIS OF A NUCLEAR POWER PLANT
    Bencin, Tim
    Avsec, Jurij
    Novosel, Urska
    PROCEEDINGS OF THE ASME 2022 POWER CONFERENCE, POWER2022, 2022,
  • [2] ENERGY AND EXERGY ANALYSIS OF A BIOMASS POWER PLANT
    Silva, Joao
    Teixeira, Senhorinha F.
    Preziati, Simone
    Teixeira, Jose Carlos
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2016, VOL. 6B, 2017,
  • [3] Uncertainties in energy and exergy efficiency of a High Pressure Turbine in a thermal power plant
    Ege, Ahmet
    Sahin, Haci Mehmet
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (17) : 7197 - 7205
  • [4] EXERGY ANALYSIS AND DETERMINATION OF IRREVERSIBILTY OF A THERMAL POWER PLANT
    Ata, Ismail
    Tanurun, Himmet Erdi
    Uzun, Sinem
    Bayrak, Sebile
    Acir, Adem
    HEAT TRANSFER RESEARCH, 2022, 53 (02) : 1 - 12
  • [5] Energy and exergy analysis of a steam power plant in Jordan
    Aijundi, Isam H.
    APPLIED THERMAL ENGINEERING, 2009, 29 (2-3) : 324 - 328
  • [6] Energy, exergy, and economic analysis of a geothermal power plant
    Kazemi H.
    Ehyaei M.A.
    Advances in Geo-Energy Research, 2018, 2 (02): : 190 - 209
  • [7] ENERGY - EXERGY ANALYSIS OF COMBINED POWER PLANT.
    Hashem, Hameed H.
    Energy Management New Delhi, 1987, 11 (02): : 103 - 109
  • [8] Energy and Exergy Analysis of a Coal Fired Power Plant
    Kumar, Sumeet
    Kumar, Dileep
    Memon, Rizwan Ahmed
    Wassan, Majid Ali
    Ali, Mir Skindar
    MEHRAN UNIVERSITY RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY, 2018, 37 (04) : 611 - 624
  • [9] Energy and Exergy Analysis of Dieng Geothermal Power Plant
    Qurrahman, Alfian Hardi
    Wilopo, Wahyu
    Susanto, Sigit Ponco
    Petrus, Himawan Tri Bayu Murti
    INTERNATIONAL JOURNAL OF TECHNOLOGY, 2021, 12 (01) : 175 - 185
  • [10] Energy and Exergy Analysis of Steam Power Plant in Paiton, Indonesia
    Rudiyanto, Bayu
    Wardani, Tri Ajeng Kusuma
    Anwar, Saiful
    Al Jamali, Lutfi
    Prasetyo, Totok
    Wibowo, Kukuh Mukti
    Pambudi, Nugroho Agung
    Saw, Lip Huat
    INTERNATIONAL CONFERENCE ON SUSTAINABLE ENERGY AND GREEN TECHNOLOGY 2018, 2019, 268