All-passive pixel super-resolution of time-stretch imaging

被引:13
|
作者
Chan, Antony C. S. [1 ,2 ]
Ho-Cheung Ng [1 ,3 ]
Bogaraju, Sharat C. V. [1 ,4 ]
So, Hayden K. H. [1 ]
Lam, Edmund Y. [1 ]
Tsia, Kevin K. [1 ]
机构
[1] Univ Hong Kong, Dept Elect & Elect Engn, Pokfulam, Hong Kong, Peoples R China
[2] CALTECH, Dept Elect Engn, Pasadena, CA 91125 USA
[3] Imperial Coll London, Dept Comp, London SW7 2AZ, England
[4] Indian Inst Space Sci & Technol, Trivandrum 695547, Kerala, India
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
基金
中国国家自然科学基金;
关键词
SWEPT SOURCE; MICROSCOPY; LASER;
D O I
10.1038/srep44608
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Based on image encoding in a serial-temporal format, optical time-stretch imaging entails a stringent requirement of state-of-the-art fast data acquisition unit in order to preserve high image resolution at an ultrahigh frame rate - hampering the widespread utilities of such technology. Here, we propose a pixel super-resolution (pixel-SR) technique tailored for time-stretch imaging that preserves pixel resolution at a relaxed sampling rate. It harnesses the subpixel shifts between image frames inherently introduced by asynchronous digital sampling of the continuous time-stretch imaging process. Precise pixel registration is thus accomplished without any active opto-mechanical subpixel-shift control or other additional hardware. Here, we present the experimental pixel-SR image reconstruction pipeline that restores high-resolution time-stretch images of microparticles and biological cells (phytoplankton) at a relaxed sampling rate (approximate to 2-5GSa/s)-more than four times lower than the originally required readout rate (20 GSa/s) - is thus effective for high-throughput label-free, morphology-based cellular classification down to single-cell precision. Upon integration with the high-throughput image processing technology, this pixel-SR time-stretch imaging technique represents a cost-effective and practical solution for large scale cell-based phenotypic screening in biomedical diagnosis and machine vision for quality control in manufacturing.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Assessing resolution in super-resolution imaging
    Demmerle, Justin
    Wegel, Eva
    Schermelleh, Lothar
    Dobbie, Ian M.
    METHODS, 2015, 88 : 3 - 10
  • [32] Recent progress on super-resolution imaging and correlative super-resolution microscopy
    Lin Dan-Ying
    Qu Jun-Le
    ACTA PHYSICA SINICA, 2017, 66 (14)
  • [33] Optical time-stretch imaging flow cytometry of phytoplankton
    Lai, Queenie T. K.
    Lau, Andy K. S.
    Wong, Kenneth K. Y.
    Tsia, Kevin K.
    2015 PHOTONICS CONFERENCE (IPC), 2015,
  • [34] Virtual optofluidic time-stretch quantitative phase imaging
    Yan, Haochen
    Wu, Yunzhao
    Zhou, Yuqi
    Xu, Muzhen
    Paie, Petra
    Lei, Cheng
    Yan, Sheng
    Goda, Keisuke
    APL PHOTONICS, 2020, 5 (04)
  • [35] Super-resolution Raman imaging
    Vogt, Nina
    NATURE METHODS, 2019, 16 (12) : 1202 - 1202
  • [36] A survey on super-resolution imaging
    Tian, Jing
    Ma, Kai-Kuang
    SIGNAL IMAGE AND VIDEO PROCESSING, 2011, 5 (03) : 329 - 342
  • [37] Multidimensional super-resolution imaging
    Lee, Steven
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [38] Super-resolution imaging with mCherry
    Rita Strack
    Nature Methods, 2017, 14 : 769 - 769
  • [39] SUPER-RESOLUTION ULTRASOUND IMAGING
    Christensen-Jeffries, Kirsten
    Couture, Olivier
    Dayton, Paul A.
    Eldar, Yonina C.
    Hynynen, Kullervo
    Kiessling, Fabian
    O'Reilly, Meaghan
    Pinton, I. Gianmarco F.
    Schmitz, Georg
    Tang, Meng-Xing
    Tanter, Mickael
    Van Sloun, Ruud J. G.
    ULTRASOUND IN MEDICINE AND BIOLOGY, 2020, 46 (04): : 865 - 891
  • [40] Super-Resolution in Medical Imaging
    Greenspan, Hayit
    COMPUTER JOURNAL, 2009, 52 (01): : 43 - 63