Navier-Stokes equations in the whole space with an eddy viscosity

被引:1
|
作者
Lewandowski, Roger [1 ,2 ]
机构
[1] Univ Rennes 1, IRMAR, UMR 6625, Campus Beaulieu, F-35042 Rennes, France
[2] INRIA, Fluminance Team, Campus Beaulieu, F-35042 Rennes, France
关键词
Navier-Stokes equations; Eddy viscosities; Turbulent solutions; LERAY-ALPHA MODEL; WEAK SOLUTIONS; LANS-ALPHA; OSCILLATIONS; FLUID; TERMS;
D O I
10.1016/j.jmaa.2019.05.051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Navier-Stokes equations with an extra eddy viscosity term in the whole space R-3. We introduce a suitable regularized system for which we prove the existence of a regular solution defined for all time. We prove that when the regularizing parameter goes to zero, the solution of the regularized system converges to a turbulent solution of the initial system. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:698 / 742
页数:45
相关论文
共 50 条
  • [21] A SHARP DECAY RESULT ON STRONG SOLUTIONS OF THE NAVIER-STOKES EQUATIONS IN THE WHOLE SPACE
    CHEN, ZM
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1991, 16 (4-5) : 801 - 820
  • [22] The Navier-Stokes Equations in the Critical Lebesgue Space
    Hongjie Dong
    Dapeng Du
    Communications in Mathematical Physics, 2009, 292 : 811 - 827
  • [23] The Navier-Stokes Equations in a Space of Bounded Functions
    Abe, Ken
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 338 (02) : 849 - 865
  • [24] Time and Space parallelization of the Navier-Stokes equations
    Albarreal Nunez, Isidoro I.
    Calzada Canalejo, M. Carmen
    Cruz Soto, Jose Luis
    Fernandez Cara, Enrique
    Galo Sanchez, Jose R.
    Marin Beltran, Mercedes
    COMPUTATIONAL & APPLIED MATHEMATICS, 2005, 24 (03): : 417 - 438
  • [25] The Navier-Stokes Equations in the Critical Lebesgue Space
    Dong, Hongjie
    Du, Dapeng
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 292 (03) : 811 - 827
  • [26] ON THE STOKES AND NAVIER-STOKES EQUATIONS IN A PERTURBED HALF-SPACE
    Kubo, Takayuki
    Shibata, Yoshihiro
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2005, 10 (06) : 695 - 720
  • [27] Homogeneity Criterion for the Navier-Stokes Equations in the Whole Spaces
    Zhi Min Chen
    Zhouping Xin
    Journal of Mathematical Fluid Mechanics, 2001, 3 : 152 - 182
  • [28] Homogeneity Criterion for the Navier-Stokes Equations in the Whole Spaces
    Chen, Zhi Min
    Xin, Zhouping
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2001, 3 (02) : 152 - 182
  • [29] On the instantaneous spreading for the Navier-Stokes system in the whole space
    Brandolese, L
    Meyer, Y
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2002, 8 : 273 - 285
  • [30] RENORMALIZED EDDY VISCOSITY AND KOLMOGOROV CONSTANT IN FORCED NAVIER-STOKES TURBULENCE
    ZHOU, Y
    VAHALA, G
    HOSSAIN, M
    PHYSICAL REVIEW A, 1989, 40 (10) : 5865 - 5874