Fast, Accurate, and Lightweight Super-Resolution with Cascading Residual Network

被引:860
|
作者
Ahn, Namhyuk [1 ]
Kang, Byungkon [1 ]
Sohn, Kyung-Ah [1 ]
机构
[1] Ajou Univ, Dept Comp Engn, Suwon, South Korea
来源
基金
新加坡国家研究基金会;
关键词
Super-resolution; Deep convolutional neural network;
D O I
10.1007/978-3-030-01249-6_16
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, deep learning methods have been successfully applied to single-image super-resolution tasks. Despite their great performances, deep learning methods cannot be easily applied to realworld applications due to the requirement of heavy computation. In this paper, we address this issue by proposing an accurate and lightweight deep network for image super-resolution. In detail, we design an architecture that implements a cascading mechanism upon a residual network. We also present variant models of the proposed cascading residual network to further improve efficiency. Our extensive experiments show that even with much fewer parameters and operations, our models achieve performance comparable to that of state-of-the-art methods.
引用
收藏
页码:256 / 272
页数:17
相关论文
共 50 条
  • [21] Fast image super-resolution with the simplified residual network
    Chunmeng Wang
    Lingqiang Ran
    Chen He
    Multimedia Tools and Applications, 2021, 80 : 4327 - 4339
  • [22] Polarization computational imaging super-resolution reconstruction with lightweight attention cascading network
    Wang J.
    Xu G.
    Ma J.
    Wang Y.
    Li Y.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2022, 30 (19): : 2404 - 2419
  • [23] LIGHTWEIGHT AND ACCURATE SINGLE IMAGE SUPER-RESOLUTION WITH CHANNEL SEGREGATION NETWORK
    Niu, Zhong-Han
    Lin, Xi-Peng
    Yu, An-Ni
    Zhou, Yang-Hao
    Yang, Yu-Bin
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 1630 - 1634
  • [24] Lightweight single image super-resolution with attentive residual refinement network
    Qin, Jinghui
    Zhang, Rumin
    NEUROCOMPUTING, 2022, 500 : 846 - 855
  • [25] LBCRN: lightweight bidirectional correction residual network for image super-resolution
    Shuying Huang
    Jichao Wang
    Yong Yang
    Weiguo Wan
    Guoqiang Li
    Multidimensional Systems and Signal Processing, 2023, 34 : 341 - 364
  • [26] GRFN: A Group Residual Feature Network for Lightweight Image Super-Resolution
    Yang, Xin
    Hong, Chaming
    Zhang, Panpan
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2025, : 3513 - 3533
  • [27] Image Super-Resolution Using Lightweight Multiscale Residual Dense Network
    Li, Shilin
    Zhao, Ming
    Fang, Zhengyun
    Zhang, Yafei
    Li, Hongjie
    INTERNATIONAL JOURNAL OF OPTICS, 2020, 2020
  • [28] Scale adaptive and lightweight super-resolution with a selective hierarchical residual network
    Dan, Jiawang
    Qu, Zhaowei
    Wang, Xiaoru
    Li, Fu
    Gu, Jiahang
    Ma, Bing
    2021 5TH INTERNATIONAL CONFERENCE ON INNOVATION IN ARTIFICIAL INTELLIGENCE (ICIAI 2021), 2021, : 8 - 14
  • [29] LBCRN: lightweight bidirectional correction residual network for image super-resolution
    Huang, Shuying
    Wang, Jichao
    Yang, Yong
    Wan, Weiguo
    Li, Guoqiang
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2023, 34 (01) : 341 - 364
  • [30] Enhanced Residual Fourier Transformation Network for Lightweight Image Super-resolution
    Yang, Yunming
    Ikehara, Masaaki
    2023 ASIA PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE, APSIPA ASC, 2023, : 826 - 832