Development of Tubular Solid Oxide Electrolysis Cells for Hydrogen Production

被引:4
|
作者
Kato, T. [1 ]
Sakaki, N. [1 ]
Negishi, A. [1 ]
Honda, T. [1 ]
Nguyen, L. T. [1 ]
Tanaka, Y. [1 ]
Tanaka, S. [1 ]
Momma, A. [1 ]
Kato, K. [1 ]
Iimura, Y. [1 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Energy Technol Res Inst, Tsukuba, Ibaraki 3058568, Japan
来源
SOLID OXIDE FUEL CELLS 11 (SOFC-XI) | 2009年 / 25卷 / 02期
关键词
D O I
10.1149/1.3205626
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Tubular SOECs with operating temperature reduced to 700 similar to 800 degrees C are developed. To improve cell performance at low temperatures, Sc2O3 stabilized ZrO2 is chosen as the electrolyte material and thickness of the electrolyte layer is tried to be controlled to about 10 mu m. Test electrolysis cells are fabricated by using slurry coating method. Dependence of cell performance on operating conditions is measured. Further, AC impedance method is applied to the cells to estimate interfacial overvoltage. From the experiment, it is clarified that the hydrogen production rate at 750 degrees C goes up to 3.6 sccm/cm(2) at the thermoneutral voltage. This value is more than 2 times of that of the commercial alkaline electrolysers.
引用
收藏
页码:1015 / 1020
页数:6
相关论文
共 50 条
  • [31] Performance Analysis of Solid Oxide Electrolysis Cells for Syngas Production
    Kazempoor, P.
    Braun, R. J.
    SYNTHESIS AND ELECTROCHEMICAL ENGINEERING (GENERAL) - 224TH ECS MEETING, 2014, 58 (19): : 43 - 53
  • [32] Numerical modeling of a solid oxide membrane reactor for intermediate temperature solid oxide electrolysis for hydrogen production
    Dumortier, M.
    Sanchez, J.
    Keddam, M.
    Takenouti, H.
    Lacroix, O.
    EUROMEMBRANE CONFERENCE 2012, 2012, 44 : 379 - 380
  • [33] Development of Tubular Solid Oxide Fuel Cells Technology
    Chen R.
    Gao J.
    Gao Y.
    Zhang H.
    Li C.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2024, 52 (06): : 1900 - 1916
  • [34] Flowsheet-based model and exergy analysis of solid oxide electrolysis cells for clean hydrogen production
    Im-orb, Karittha
    Visitdumrongkul, Nuttawut
    Saebea, Dang
    Patcharavorachot, Yaneeporn
    Arpornwichanop, Amornchai
    JOURNAL OF CLEANER PRODUCTION, 2018, 170 : 1 - 13
  • [35] Energy storage and hydrogen production by proton conducting solid oxide electrolysis cells with a novel heterogeneous design
    Lei, Libin
    Zhang, Jihao
    Guan, Rongfeng
    Liu, Jianping
    Chen, Fanglin
    Tao, Zetian
    ENERGY CONVERSION AND MANAGEMENT, 2020, 218
  • [36] Eco-thermodynamics of hydrogen production by high-temperature electrolysis using solid oxide cells
    Mehmeti, Andi
    Angelis-Dimakis, Athanasios
    Munoz, Carlos Boigues
    Graziadio, Marco
    McPhail, Stephen J.
    JOURNAL OF CLEANER PRODUCTION, 2018, 199 : 723 - 736
  • [37] Tubular Solid Oxide Electrolysis Cell for NOx Decomposition
    Hamamoto, Koichi
    Suzuki, Toshio
    Fujishiro, Yoshinobu
    Awano, Masanobu
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (08) : B1050 - B1053
  • [38] Recent advances in high temperature solid oxide electrolysis cell for hydrogen production
    Singh, Parminder
    Singh, Kulvir
    Bhunia, Haripada
    INDIAN CHEMICAL ENGINEER, 2025, 67 (01) : 31 - 48
  • [39] Hydrogen production through high-temperature electrolysis in a solid oxide cell
    Herring, JS
    Lessing, P
    O'Brien, JE
    Stoots, C
    Hartvigsen, J
    Elangovan, S
    NUCLEAR PRODUCTION OF HYDROGEN, 2004, : 183 - 200
  • [40] Cost analysis of hydrogen production by high-temperature solid oxide electrolysis
    Prosser, Jacob H.
    James, Brian D.
    Murphy, Brian M.
    Wendt, Daniel S.
    Casteel, Micah J.
    Westover, Tyler L.
    Knighton, L. Todd
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 49 : 207 - 227