Curvature suppresses the Rayleigh-Taylor instability

被引:37
|
作者
Trinh, Philippe H. [1 ]
Kim, Hyoungsoo [2 ]
Hammoud, Naima [3 ]
Howell, Peter D. [1 ]
Chapman, S. Jonathan [1 ]
Stone, Howard A. [2 ]
机构
[1] Univ Oxford, Math Inst, Oxford Ctr Ind & Appl Math, Oxford OX2 6GG, England
[2] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA
[3] Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
基金
英国工程与自然科学研究理事会;
关键词
SURFACE-TENSION; ROTATING CYLINDER; COATING FLOWS; LAYER; FILM;
D O I
10.1063/1.4876476
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The dynamics of a thin liquid film on the underside of a curved cylindrical substrate is studied. The evolution of the liquid layer is investigated as the film thickness and the radius of curvature of the substrate are varied. A dimensionless parameter (a modified Bond number) that incorporates both geometric parameters, gravity, and surface tension is identified, and allows the observations to be classified according to three different flow regimes: stable films, films with transient growth of perturbations followed by decay, and unstable films. Experiments and linear stability theory confirm that below a critical value of the Bond number curvature of the substrate suppresses the Rayleigh-Taylor instability. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:7
相关论文
共 50 条
  • [11] Confined Rayleigh-Taylor instability
    Alqatari, Samar
    Videbaek, Thomas E.
    Nagel, Sidney R.
    Hosoi, Anette
    Bischofberger, Irmgard
    PHYSICAL REVIEW FLUIDS, 2022, 7 (11)
  • [12] Granular Rayleigh-Taylor instability
    Vinningland, Jan Ludvig
    Johnsen, Oistein
    Flekkoy, Eirik G.
    Toussaint, Renaud
    Maloy, Knut Jorgen
    POWDERS AND GRAINS 2009, 2009, 1145 : 1067 - +
  • [13] AN OVERVIEW OF RAYLEIGH-TAYLOR INSTABILITY
    SHARP, DH
    PHYSICA D, 1984, 12 (1-3): : 3 - 18
  • [14] MODEL OF RAYLEIGH-TAYLOR INSTABILITY
    AREF, H
    TRYGGVASON, G
    PHYSICAL REVIEW LETTERS, 1989, 62 (07) : 749 - 752
  • [15] On saturation of Rayleigh-Taylor instability
    Frenkel, AL
    Halpern, D
    IUTAM SYMPOSIUM ON NONLINEAR WAVES IN MULTI-PHASE FLOW, 2000, 57 : 69 - 79
  • [16] COMPRESSIBLE RAYLEIGH-TAYLOR INSTABILITY
    BAKER, L
    PHYSICS OF FLUIDS, 1983, 26 (04) : 950 - 952
  • [17] Rotating Rayleigh-Taylor instability
    Scase, M. M.
    Baldwin, K. A.
    Hill, R. J. A.
    PHYSICAL REVIEW FLUIDS, 2017, 2 (02):
  • [18] NUMERICAL STUDY OF THE RAYLEIGH-TAYLOR INSTABILITY
    BABENKO, KI
    PETROVICH, VI
    DOKLADY AKADEMII NAUK SSSR, 1980, 255 (02): : 318 - 322
  • [19] Nonlinear saturation of the Rayleigh-Taylor instability
    Das, A
    Mahajan, S
    Kaw, P
    Sen, A
    Benkadda, S
    Verga, A
    PHYSICS OF PLASMAS, 1997, 4 (04) : 1018 - 1027
  • [20] Asymptotic behavior of the Rayleigh-Taylor instability
    Duchemin, L
    Josserand, C
    Clavin, P
    PHYSICAL REVIEW LETTERS, 2005, 94 (22)