The Singular Value Decomposition over Completed Idempotent Semifields

被引:6
|
作者
Valverde-Albacete, Francisco J. [1 ]
Pelaez-Moreno, Carmen [1 ]
机构
[1] Univ Carlos III Madrid, Dept Signal Theory & Commun, Leganes 28911, Spain
关键词
idempotent singular value decomposition; formal concept analysis; complete idempotent semifields; schedule algebra; max-plus algebra; tropical algebra; min-plus algebra; FORMAL CONCEPT ANALYSIS; MATHEMATICAL MORPHOLOGY; MAX; MATRICES; DUALITY; ALGEBRA;
D O I
10.3390/math8091577
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we provide a basic technique for Lattice Computing: an analogue of the Singular Value Decomposition for rectangular matrices over complete idempotent semifields (i-SVD). These algebras are already complete lattices and many of their instances-the complete schedule algebra or completed max-plus semifield, the tropical algebra, and the max-times algebra-are useful in a range of applications, e.g., morphological processing. We further the task of eliciting the relation between i-SVD and the extension of Formal Concept Analysis to complete idempotent semifields (K-FCA) started in a prior work. We find out that for a matrix with entries considered in a complete idempotent semifield, the Galois connection at the heart of K-FCA provides two basis of left- and right-singular vectors to choose from, for reconstructing the matrix. These are join-dense or meet-dense sets of object or attribute concepts of the concept lattice created by the connection, and they are almost surely not pairwise orthogonal. We conclude with an attempt analogue of the fundamental theorem of linear algebra that gathers all results and discuss it in the wider setting of matrix factorization.
引用
收藏
页数:39
相关论文
共 50 条
  • [21] SINGULAR VALUE DECOMPOSITION OF AN IMAGE
    WANG, TH
    SMPTE JOURNAL, 1985, 94 (01): : 166 - 166
  • [22] Singular Value Decomposition of Complexes
    Brake, Danielle A.
    Hauenstein, Jonathan D.
    Schreyer, Frank-Olaf
    Sommese, Andrew J.
    Stillman, Michael E.
    SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY, 2019, 3 (03) : 507 - 522
  • [24] GENERALIZING SINGULAR VALUE DECOMPOSITION
    VANLOAN, CF
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1976, 13 (01) : 76 - 83
  • [25] Singular value decomposition in AHP
    Gass, SI
    Rapcsák, T
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2004, 154 (03) : 573 - 584
  • [26] Simultaneous singular value decomposition
    Maehara, Takanori
    Murota, Kazuo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (01) : 106 - 116
  • [27] UPDATING SINGULAR VALUE DECOMPOSITION
    BUNCH, JR
    NIELSEN, CP
    NUMERISCHE MATHEMATIK, 1978, 31 (02) : 111 - 129
  • [28] ALGORITHM FOR SINGULAR VALUE DECOMPOSITION
    ROSS, DC
    PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS, 1984, 495 : 22 - 29
  • [29] Updating the singular value decomposition
    Davies, PI
    Smith, MI
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 170 (01) : 145 - 167
  • [30] On the singular value decomposition over finite fields and orbits of GU x GU
    Guralnick, Robert M.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2021, 32 (05): : 1083 - 1094