An investigation of fractional Bagley-Torvik equation

被引:20
|
作者
Fazli, Hossein [1 ]
Nieto, Juan J. [2 ,3 ]
机构
[1] Univ Tabriz, Fac Math Sci, Tabriz, Iran
[2] Univ Santiago de Compostela, Dept Estadist Anal Matemat & Optimizac, Santiago De Compostela 15782, Spain
[3] Real Acad Galega Ciencias, Santiago De Compostela, A Coruna, Spain
来源
OPEN MATHEMATICS | 2019年 / 17卷
关键词
Bagley-Torvik equation; Fractional calculus; Partially fixed point; Mixed monotone operator; Existence; Uniqueness; Approximation; FIXED-POINT THEOREMS; DIFFERENTIAL-EQUATIONS; NUMERICAL-SOLUTION; CALCULUS;
D O I
10.1515/math-2019-0040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper the authors prove the existence as well as approximations of the solutions for the Bagley-Torvik equation admitting only the existence of a lower (coupled lower and upper) solution. Our results rely on an appropriate fixed point theorem in partially ordered normed linear spaces. Illustrative examples are included to demonstrate the validity and applicability of our technique.
引用
收藏
页码:499 / 512
页数:14
相关论文
共 50 条
  • [31] Approximate solution of the fuzzy fractional Bagley-Torvik equation by the RBF collocation method
    Esmaeilbeigi, Mohsen
    Paripour, Mahmoud
    Garmanjani, Gholamreza
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2018, 6 (02): : 186 - 214
  • [32] Fractional Nonlocal Newton’s Law of Motion and Emergence of Bagley-Torvik Equation
    El-Nabulsi R.A.
    Journal of Peridynamics and Nonlocal Modeling, 2020, 2 (1) : 50 - 58
  • [33] Fuzzy fractional generalized Bagley-Torvik equation with fuzzy Caputo gH-differentiability
    Muhammad, Ghulam
    Akram, Muhammad
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [34] Fractional differential equations of Bagley-Torvik and Langevin type
    Webb, J. R. L.
    Lan, Kunquan
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2024, 27 (04) : 1639 - 1669
  • [35] The numerical solution to the Bagley-Torvik equation by exponential integrators
    Esmaeili, S.
    SCIENTIA IRANICA, 2017, 24 (06) : 2941 - 2951
  • [36] Analytic and numerical solutions of discrete Bagley-Torvik equation
    Meganathan, Murugesan
    Abdeljawad, Thabet
    Khashan, M. Motawi
    Xavier, Gnanaprakasam Britto Antony
    Jarad, Fahd
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [37] Explicit Solution for the Bagley-Torvik Equation With Variable Coefficients
    Wang, Huiwen
    Li, Fang
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025,
  • [38] Solving fractional Bagley-Torvik equation by fractional order Fibonacci wavelet arising in fluid mechanics
    Yadav, Pooja
    Jahan, Shah
    Nisar, Kottakkaran Sooppy
    AIN SHAMS ENGINEERING JOURNAL, 2024, 15 (01)
  • [39] Novel approach by shifted Schröder polynomials for solving the fractional Bagley-Torvik equation
    Yassin, N. M.
    Aly, Emad H.
    Atta, A. G.
    PHYSICA SCRIPTA, 2025, 100 (01)
  • [40] A Global Method for Approximating Caputo Fractional Derivatives-An Application to the Bagley-Torvik Equation
    De Bonis, Maria Carmela
    Occorsio, Donatella
    AXIOMS, 2024, 13 (11)