Experimental Performance of a Completely Passive Thermosyphon Cooling System Rejecting Heat by Natural Convection Using the Working Fluids R1234ze, R1234yf, and R134a

被引:15
|
作者
Cataldo, Filippo [1 ]
Thome, John Richard [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Dept Mech Engn, Lab Heat & Mass Transfer LTCM, Stn 9, CH-1015 Lausanne, Switzerland
关键词
FLOW VISUALIZATION; 2-PHASE; LOOP; INSTABILITY; EVAPORATOR; MODELS; SINKS; CHF;
D O I
10.1115/1.4039706
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The present paper proposes a proof of concept of a completely passive thermosyphon for cooling of power electronics. This thermosyphon is composed of an evaporator to cool down a four-heater pseudo-transistor module and a natural air-cooled condenser to reject the heat into the environment. R1234ze, R1234yf, and R134a are used as the working fluids with charges of 524, 517, and 566 g, respectively, for the low charge tests, and 720, 695, and 715 g for the high charge tests. It has been demonstrated that the refrigerant R1234ze with a low charge is not a good solution for the cooling system proposed here since low evaporator performance and fluid instability have been detected at moderate heat fluxes. In fact, R1234ze needed a larger charge of refrigerant to be safely used, reaching a transistor temperature of 53 degrees C at a heat load of 65W. R1234yf and R134a, on the other hand, showed good results for both the low and the high charge cases. The maximum temperatures measured, respectively, were 52 degrees C and 48 degrees C at 65W for the low charge case and 55 degrees C and 47 degrees C at 62W for the high charge case. The corresponding values of overall thermal resistances of the thermosyphon for the working fluids R1234yf and R134a at the maximum heat load are very similar, being in the range of 0: 44 - 0: 46K/W.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Comparative Analysis of Heat Pump System with IHX Using R1234yf and R134a
    Santa, Robert
    PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING, 2021, 65 (04): : 363 - 373
  • [32] EXPERIMENTAL STUDY ON R1234yf/R134a MIXTURE (R513a) AS R134a REPLACEMENT IN HEAT PIPES
    Kumar, Vivek
    Kabir, Raihanul
    Shannon, Zachary
    Waghmare, Prashant R.
    Flynn, M. R.
    JOURNAL OF ENHANCED HEAT TRANSFER, 2025, 32 (04) : 1 - 23
  • [33] Theoretical analysis of R1234yf and R1234yf/R125 mixture as replacement of R134a in vapor compression system
    Lin, Yongmei
    Meng, Zhaofeng
    Huo, Ziheng
    Ding, Chuangchuang
    Wang, Song
    Wang, Longji
    INTERNATIONAL JOURNAL OF LOW-CARBON TECHNOLOGIES, 2024, 19 : 490 - 496
  • [34] Experimental comparison of an air-to-water refrigeration system working with R134a and R1234yf
    Illan-Gomez, F.
    Garcia-Cascales, J. R.
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2019, 97 : 124 - 131
  • [35] Thermal Energy Storage of R1234yf, R1234ze, R134a and R32/MOF-74 Nanofluids: A Molecular Simulation Study
    Hu, Jieyao
    Liu, Chao
    Liu, Lang
    Li, Qibin
    MATERIALS, 2018, 11 (07):
  • [36] Performance evaluation of an automotive air conditioning and heat pump system using R1234yf and R134a
    Aral, Mumin Celil
    Suhermanto, Mukhamad
    Hosoz, Murat
    SCIENCE AND TECHNOLOGY FOR THE BUILT ENVIRONMENT, 2021, 27 (01) : 44 - 60
  • [37] Theoretical analysis and experimental research on R1234yf as alternative to R134a in a heat pump system
    Wang, Hongli
    Zhang, Shuaihua
    Li, Huasong
    Guo, Xiaoying
    ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2023, 42 (03)
  • [38] Critical heat flux characteristics of R1234yf, R1234ze(E) and R134a during saturated flow boiling in narrow high aspect ratio microchannels
    Kaern, Martin Ryhl
    Criscuolo, Gennaro
    Meyer, Knud Erik
    Markussen, Wiebke Brix
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 180
  • [39] Comparative performance of an automobile heat pump system with an internal heat exchanger using R1234yf and R134a
    Tasdemirci, Erkutay
    Alptekin, Ertan
    Hosoz, Murat
    INTERNATIONAL JOURNAL OF EXERGY, 2020, 33 (01) : 98 - 113
  • [40] Phase equilibrium of R1234yf and R1234ze(E) with POE lubricant and thermodynamic performance on the evaporator
    Jia, Xiucan
    Wang, Jian
    Wang, Xiaopo
    Hu, Yusheng
    Sun, Yanjun
    FLUID PHASE EQUILIBRIA, 2020, 514