Optical study on the possible Slater insulator SrIr0.8Sn0.2O3

被引:1
|
作者
Zheng, P. [1 ]
Cui, Q. [1 ,2 ]
Chen, Z. G. [1 ]
Cheng, J. G. [1 ,2 ,3 ]
Liu, X. [1 ,4 ]
Wang, Z. Q. [5 ]
Luo, J. L. [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100190, Peoples R China
[3] Songshan Lake Mat Lab, Dongguan 523808, Guangdong, Peoples R China
[4] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
[5] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevB.100.045101
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The orthorhombic perovskite iridate SrIr0.8Sn0.2O3 is reported to be a new candidate of Slater insulator at low temperatures. Here, we present optical spectroscopy measurements on SrIr0.8Sn0.2O3 at different temperatures (T) across the paramagnetic-antiferromagnetic phase transition. The low energy reflectivity decreases with reducing T . Six phonon peaks in the spectrum at low T are visible at room temperature, indicating the absence of crystal structure phase transition from 300 K to 10 K. The real part of conductivity spectra sigma(1)(omega) are obtained by employing the standard Kramers-Kronig transformation. In the paramagnetic state at room temperature, sigma(1)(omega) reaches a limiting value as omega -> 0, implying an electrical conducting state. Upon decreasing T, the low frequency sigma(1)(omega) decreases and approaches zero with a concomitant opening of a direct gap. Detailed analysis of the low energy data shows that the gap opening is continuous and sigma(1)(omega) at the low energy gap edge follows an unusual omega(1/2). dependence at low temperatures which is remarkably similar to other Slater insulators, such as NaOsO3.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Enhanced sintering of Ce0.8Nd0.2O2_δ-La0.8Sr0.2Ga0.8Mg0.2O3_δ using CoO as a sintering aid
    Chen, Lei
    Zhou, De Feng
    Wang, Yuan
    Zhu, Xiao Fei
    Meng, Jian
    CERAMICS INTERNATIONAL, 2017, 43 (04) : 3583 - 3589
  • [22] ProtontransportinunsinteredBaCe0.8Y0.2O3-αforeasilypreparedelectrochemicaldevices
    Xi Wang
    Yushi Ding
    Ying Li
    Gaopeng Zhou
    Wenlong Huang
    Journal of Rare Earths, 2025, 43 (01) : 133 - 145
  • [23] Thermal stability and oxygen separation properties of SrCo0.8Fe0.2O3-δ and SrCo0.8Fe0.1Sn0.1O3-δ ceramic membranes
    Fan Chuan-Gang
    Liu Wei
    Zuo Yan-Bo
    Deng Zeng-Qiang
    Huang Xiang-Xian
    Chen Chu-Sheng
    JOURNAL OF INORGANIC MATERIALS, 2006, 21 (05) : 1141 - 1146
  • [24] AC Impedance Characterisation of a La0.8Sr0.2Co0.2Fe0.8O3-δ Electrode
    Kournoutis, V. Ch.
    Tietz, F.
    Bebelis, S.
    FUEL CELLS, 2009, 9 (06) : 852 - 860
  • [25] Processing of dense La0.2Sr0.8Fe0.8Cr0.2O3-δ oxygen membranes
    George, C
    Majkic, G
    Lo, W
    Salama, K
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2001, 83 (1-3): : 198 - 203
  • [26] Electrostatic spray deposition of La0.8Sr0.2Co0.2Fe0.8O3 films
    Fu, CY
    Chang, CL
    Hsu, CS
    Hwang, BH
    MATERIALS CHEMISTRY AND PHYSICS, 2005, 91 (01) : 28 - 35
  • [27] Electrical conductivity of cobalt doped La0.8Sr0.2Ga0.8Mg0.2O3-δ
    Wang, Shizhong
    Wu, Lingli
    Liang, Ying
    JOURNAL OF POWER SOURCES, 2007, 166 (01) : 22 - 29
  • [28] Observation of spin glass behavior in Ba0.8La0.2Ti0.8Co0.2O3
    Shao, D. F.
    Yang, J.
    Zhu, X. B.
    Dai, J. M.
    Yang, Z. R.
    Song, W. H.
    Sun, Y. P.
    EUROPEAN PHYSICAL JOURNAL B, 2012, 85 (05):
  • [29] Modes of surface exchange in La0.2Sr0.8Cr0.2Fe0.8O3-d
    Mims, CA
    Bayani, N
    Jacobson, AJ
    van der Heide, PAW
    SOLID STATE IONICS, 2005, 176 (3-4) : 319 - 323
  • [30] Magnetic and dielectric behaviors of Ba0.2Sr0.8Co0.8Fe0.2O3-δ oxide
    Singha, Sandeep Kumar
    Kumar, Jitendra
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2006, 67 (08) : 1687 - 1691