Parameter inference of general nonlinear dynamical models of gene regulatory networks from small and noisy time series

被引:9
|
作者
Berrones, Arturo [1 ]
Jimenez, Edgar [2 ]
Aracelia Alcorta-Garcia, Maria [2 ]
Almaguer, F-Javier [2 ]
Pena, Brenda [1 ]
机构
[1] Univ Autonoma Nuevo Leon, Posgrado Ingn Sistemas, Fac Ingn Mecan & Elect, San Nicolas De Los Garza 66455, NL, Mexico
[2] Univ Autonoma Nuevo Leon, Posgrado Ingn Sistemas, Fac Ciencias Fis Matemat, San Nicolas De Los Garza 66455, NL, Mexico
关键词
CTRNN; Genetic regulatory networks; Genetic expression time series; Bayesian inference; DIFFERENTIAL EVOLUTION; ALGORITHMS;
D O I
10.1016/j.neucom.2015.10.095
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A new inference approach to general dynamic models of gene regulatory networks (GRN) is introduced. The methodology is based on a Maximum a Posteriori (MAP) smoothing of time series data from which mean field variables of the dynamics are estimated. The interactions are modeled by a Continuous Time Recurrent Neural Network (CTRNN). Parameter estimation of the CTRNN is performed without the need to numerically solve the system of nonlinear differential equations. The method is tested on a benchmark of real genetic networks and displays superior performance, in terms of the mean squared error of the expression dynamics, compared to other formalisms. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:555 / 563
页数:9
相关论文
共 50 条
  • [31] Analysis of the inaccuracy of nonlinear-map parameter reconstruction from noisy chaotic time series
    Butkovskij, O.Ya.
    Kravtsov, Yu.A.
    Logunov, M.Yu.
    Izvestiya Vysshikh Uchebnykh Zavedenij. Radiofizika, 2002, 45 (01): : 55 - 67
  • [32] Dynamical networks: Continuous time and general discrete time models
    Afraimovich, V. S.
    Bunimovich, L. A.
    Moreno, S. V.
    REGULAR & CHAOTIC DYNAMICS, 2010, 15 (2-3): : 127 - 145
  • [33] Dynamical networks: Continuous time and general discrete time models
    V. S. Afraimovich
    L. A. Bunimovich
    S. V. Moreno
    Regular and Chaotic Dynamics, 2010, 15 : 127 - 145
  • [34] Gene regulatory network inference from sparsely sampled noisy data
    Aalto, Atte
    Viitasaari, Lauri
    Ilmonen, Pauliina
    Mombaerts, Laurent
    Goncalves, Jorge
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [35] Detection of dynamical systems from noisy multivariate time series
    Asai, Yoshiyuki
    Villa, Alessandro E. P.
    SEMINAR ON STOCHASTIC ANALYSIS, RANDOM FIELDS AND APPLICATIONS V, 2008, 59 : 3 - +
  • [36] Gene regulatory network inference from sparsely sampled noisy data
    Atte Aalto
    Lauri Viitasaari
    Pauliina Ilmonen
    Laurent Mombaerts
    Jorge Gonçalves
    Nature Communications, 11
  • [37] Gene regulatory networks inference with recurrent neural network models
    Xu, R
    Wunsch, DC
    PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), VOLS 1-5, 2005, : 286 - 291
  • [38] Reconstructing bifurcation diagrams from noisy time series using nonlinear autoregressive models
    Division of Biophysical Engineering, Dept. of Systems and Human Science, Osaka University, Toyonaka City, Osaka 560-8531, Japan
    Phys Rev E., 1 (1073-1076):
  • [39] Constructing networks from a dynamical system perspective for multivariate nonlinear time series
    Nakamura, Tomomichi
    Tanizawa, Toshihiro
    Small, Michael
    PHYSICAL REVIEW E, 2016, 93 (03)
  • [40] Reconstructing bifurcation diagrams from noisy time series using nonlinear autoregressive models
    Bagarinao, E
    Pakdaman, K
    Nomura, T
    Sato, S
    PHYSICAL REVIEW E, 1999, 60 (01): : 1073 - 1076