Optimizing propagating spin wave spectroscopy

被引:16
|
作者
Lucassen, Juriaan [1 ]
Schippers, Casper F. [1 ]
Rutten, Luuk [1 ]
Duine, Rembert A. [1 ,2 ]
Swagten, Henk J. M. [1 ]
Koopmans, Bert [1 ]
Lavrijsen, Reinoud [1 ]
机构
[1] Eindhoven Univ Technol, Dept Appl Phys, POB 513, NL-5600 MB Eindhoven, Netherlands
[2] Univ Utrecht, Inst Theoret Phys, Princetonpl 5, NL-3584 CC Utrecht, Netherlands
关键词
DZYALOSHINSKII-MORIYA INTERACTION; FERROMAGNETIC-FILMS; EXCHANGE;
D O I
10.1063/1.5090892
中图分类号
O59 [应用物理学];
学科分类号
摘要
The frequency difference between two oppositely propagating spin waves can be used to probe several interesting magnetic properties, such as the Dzyaloshinskii-Moriya interaction (DMI). Propagating spin wave spectroscopy is a technique that is very sensitive to this frequency difference. Here, we show several elements that are important to optimize devices for such a measurement. We demonstrate that for wide magnetic strips, there is a need for de-embedding. Additionally, for these wide strips, there is a large parasitic antenna-antenna coupling that obfuscates any spin wave transmission signal, which is remedied by moving to smaller strips. The conventional antenna design excites spin waves with two different wave vectors. As the magnetic layers become thinner, the resulting resonances move closer together and become very difficult to disentangle. In the last part, we therefore propose and verify an alternative antenna design that excites spin waves with only one wave vector. We suggest to use this antenna design to quantify the DMI in thin magnetic layers. Published under license by AIP Publishing.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] HIGH RESOLUTION SPIN WAVE SPECTROSCOPY IN YIG
    JANTZ, W
    SCHNEIDER, J
    SOLID STATE COMMUNICATIONS, 1971, 9 (01) : 69 - +
  • [22] Collimated Bidirectional Propagating Spin Wave Generated by a Nonlocal Spin-Current Nano-oscillator
    Chen, Lina
    Gao, Zhenyu
    Zhou, Kaiyuan
    Du, Y. W.
    Liu, R. H.
    PHYSICAL REVIEW APPLIED, 2021, 16 (03)
  • [23] Interference patterns of propagating spin wave in spin Hall oscillator arrays( vol 135, 223901 ,2024)
    Haidar, Mohammad
    JOURNAL OF APPLIED PHYSICS, 2024, 136 (07)
  • [24] Analysis of the Circuit-Field Interactions in Propagating Spin-Wave Experiments
    Freschi, Fabio
    Giaccone, Luca
    Khan, Omar
    Ragusa, Carlo
    Repetto, Maurizio
    IEEE TRANSACTIONS ON MAGNETICS, 2015, 51 (03)
  • [25] Transformation of propagating spin-wave modes in microscopic waveguides with variable width
    Demidov, Vladislav E.
    Jersch, Johann
    Demokritov, Sergej O.
    Rott, Karsten
    Krzysteczko, Patryk
    Reiss, Guenter
    PHYSICAL REVIEW B, 2009, 79 (05)
  • [26] The phase accumulation and antenna near field of microscopic propagating spin wave devices
    Chang, Crosby S.
    Kostylev, Mikhail
    Ivanov, Eugene
    Ding, Junjia
    Adeyeye, Adekunle O.
    APPLIED PHYSICS LETTERS, 2014, 104 (03)
  • [27] Propagating volume and localized spin wave modes on a lattice of circular magnetic antidots
    Kostylev, Mikhail
    Gubbiotti, Gianluca
    Carlotti, Giovanni
    Socino, Giovanni
    Tacchi, Silvia
    Wang, Chenchen
    Singh, Navab
    Adeyeye, Adekunle O.
    Stamps, Robert L.
    JOURNAL OF APPLIED PHYSICS, 2008, 103 (07)
  • [28] Mode conversion from quantized to propagating spin waves in a rhombic antidot lattice supporting spin wave nanochannels
    Tacchi, S.
    Botters, B.
    Madami, M.
    Klos, J. W.
    Sokolovskyy, M. L.
    Krawczyk, M.
    Gubbiotti, G.
    Carlotti, G.
    Adeyeye, A. O.
    Neusser, S.
    Grundler, D.
    PHYSICAL REVIEW B, 2012, 86 (01)
  • [29] Non linear analysis of obliquely propagating spin electron acoustic wave in a partially spin polarized degenerate plasma
    Iqbal, Z.
    Murtaza, G.
    PHYSICS LETTERS A, 2018, 382 (01) : 44 - 48
  • [30] Spin-wave spectroscopy of individual ferromagnetic nanodisks
    Dobrovolskiy, Oleksandr, V
    Bunyaev, Sergey A.
    Vovk, Nikolay R.
    Navas, David
    Gruszecki, Pawel
    Krawczyk, Maciej
    Sachser, Roland
    Huth, Michael
    Chumak, Andrii, V
    Guslienko, Konstantin Y.
    Kakazei, Gleb N.
    NANOSCALE, 2020, 12 (41) : 21207 - 21217