Thermal conductivity of carbon dioxide from non-equilibrium molecular dynamics: A systematic study of several common force fields

被引:30
|
作者
Trinh, Thuat T. [1 ]
Vlugt, Thijs J. H. [2 ]
Kjelstrup, Signe [1 ,2 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Chem, N-7034 Trondheim, Norway
[2] Delft Univ Technol, Dept Proc & Energy, Delft, Netherlands
来源
JOURNAL OF CHEMICAL PHYSICS | 2014年 / 141卷 / 13期
关键词
N-BUTANE; CO2; ADSORPTION; SEPARATION; DIFFUSION; MEMBRANE; MIXTURES; CAPTURE;
D O I
10.1063/1.4896965
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report a systematic investigation of the thermal conductivity of various three-site models of carbon dioxide (CO2) using nonequilibrium molecular dynamics in the temperature range 300-1000 K and for pressures up to 200 MPa. A direct comparison with experimental data is made. Three popular CO2 force fields (MSM, EPM2, and TraPPE) and two flexible models (based on EPM2) were investigated. All rigid force fields accurately predict the equation of state for carbon dioxide for the given range of variables. They can also reproduce the thermal conductivity of CO2 at room temperature and predict a decrease of the thermal conductivity with increasing temperature. At high temperatures, the rigid models underestimate the thermal conductivity. (C) 2014 Author(s).
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Prediction of specific heat and thermal conductivity of nanofluids by a combined equilibrium and non-equilibrium molecular dynamics simulation
    Mohebbi, Ali
    JOURNAL OF MOLECULAR LIQUIDS, 2012, 175 : 51 - 58
  • [22] Calculation of the thermal conductivity of human serum albumin (HSA) with equilibrium/non-equilibrium molecular dynamics approaches
    Ashkezari, Abbas Zarenezhad
    Jolfaei, Nitasha Adavoodi
    Jolfaei, Niyusha Adavoodi
    Hekmatifar, Maboud
    Toghraie, Davood
    Sabetvand, Roozbeh
    Rostami, Sara
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2020, 188
  • [23] Non-equilibrium molecular dynamics study of nanoscale thermal contact resistance
    Xiang, Heng
    Jiang, Pei-Xue
    LIu, Qi-Xin
    MOLECULAR SIMULATION, 2008, 34 (07) : 679 - 687
  • [24] Polarization of acetonitrile under thermal fields via non-equilibrium molecular dynamics simulations
    Gittus, Oliver R.
    Albella, Pablo
    Bresme, Fernando
    JOURNAL OF CHEMICAL PHYSICS, 2020, 153 (20):
  • [25] Non-equilibrium molecular dynamics simulation of thermal conductivity and thermal diffusion of binary mixtures confined in a nanochannel
    Pourali, Meisam
    Maghari, Ali
    CHEMICAL PHYSICS, 2014, 444 : 30 - 38
  • [26] Thermal conductivity of carbon nanotube-polyamide-6,6 nanocomposites: Reverse non-equilibrium molecular dynamics simulations
    Alaghemandi, Mohammad
    Mueller-Plathe, Florian
    Boehm, Michael C.
    JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (18):
  • [27] Vibrational mean free paths and thermal conductivity of amorphous silicon from non-equilibrium molecular dynamics simulations
    Saaskilahti, K.
    Oksanen, J.
    Tulkki, J.
    McGaughey, A. J. H.
    Volz, S.
    AIP ADVANCES, 2016, 6 (12)
  • [28] Cross-plane thermal conductivity of superlattices with rough interfaces using equilibrium and non-equilibrium molecular dynamics
    Termentzidis, Konstantinos
    Merabia, Samy
    Chantrenne, Patrice
    Keblinski, Pawel
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2011, 54 (9-10) : 2014 - 2020
  • [29] Thermal Conductivity of Hydrous Wadsleyite Determined by Non-Equilibrium Molecular Dynamics Based on Machine Learning
    Wang, Dong
    Wu, Zhongqing
    Deng, Xin
    GEOPHYSICAL RESEARCH LETTERS, 2022, 49 (22)
  • [30] Thermal conductivity of graphene/graphane/graphene heterostructure nanoribbons: Non-equilibrium molecular dynamics simulations
    Kim, Jong-Chol
    Wi, Ju-Hyok
    Ri, Nam-Chol
    Ri, Su-Il
    SOLID STATE COMMUNICATIONS, 2021, 328