Self-Folding Origami Microstrip Antennas

被引:98
|
作者
Hayes, Gerard J. [1 ]
Liu, Ying [2 ]
Genzer, Jan [2 ]
Lazzi, Gianluca [3 ]
Dickey, Michael D. [2 ]
机构
[1] N Carolina State Univ, Dept Elect & Comp Engn, Raleigh, NC 27695 USA
[2] N Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27695 USA
[3] Univ Utah, Dept Elect & Comp Engn, Salt Lake City, UT 84112 USA
基金
美国国家科学基金会;
关键词
Light-activated; light-sensitive; microstrip antennas; origami; pre-stressed polymers; reconfigurable; self-folding; shape memory polymers;
D O I
10.1109/TAP.2014.2346188
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This communication presents antennas that incorporate self-folding polymer substrates that transform planar, two-dimensional structures into three-dimensional antennas when exposed to a light source. Prestrained polystyrene sheets supporting a patterned copper foil form the light-activated structures. Black ink that is inkjet printed on the polymer substrate selectively absorbs light and controls the shape of the transformation. This approach represents a simple method to reconfigure the shape of an antenna and a hands-free method to assemble 3D antennas from many of the conventional methods that are used to pattern 2D metal foils. We demonstrate and characterize two embodiments that highlight this concept: a monopole antenna that transforms from a conventional microstrip transmission line and a microstrip patch antenna that converts within seconds into a monopole antenna.
引用
收藏
页码:5416 / 5419
页数:4
相关论文
共 50 条
  • [41] A self-folding metallocavitand
    Lücking, U
    Chen, J
    Rudkevich, DA
    Rebek, J
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (41) : 9929 - 9934
  • [42] Self-folding cavitands
    Rudkevich, DM
    Hilmersson, G
    Rebek, J
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (47) : 12216 - 12225
  • [43] Enabling Robust Self-Folding Origami by Pre-Biasing Vertex Buckling Direction
    Kang, Ji-Hwan
    Kim, Hyunki
    Santangelo, Christian D.
    Hayward, Ryan C.
    ADVANCED MATERIALS, 2019, 31 (39)
  • [44] Self-folding origami of prestrained shape memory polymer by resistive Joule-heating
    Siwakoti, Midhan
    Mailen, Russell W.
    BEHAVIOR AND MECHANICS OF MULTIFUNCTIONAL MATERIALS XIV, 2020, 11377
  • [45] Self-folding magnetic Ti–Ni Bi-metallic micro-origami
    Dapeng Li
    Minhyuk Park
    Yiwei Wang
    Journal of Materials Research, 2022, 37 : 3071 - 3082
  • [46] Remotely actuated programmable self-folding origami strings using magnetic induction heating
    Lahondes, Quentin
    Miyashita, Shuhei
    FRONTIERS IN ROBOTICS AND AI, 2024, 11
  • [47] Nanopatterned self-folding origami may open up new possibilities in tissue engineering
    Naglieri, Valentina
    MRS BULLETIN, 2016, 41 (11) : 840 - 840
  • [48] Programming Reversibly Self-Folding Origami with Micropatterned Photo-Crosslinkable Polymer Trilayers
    Na, Jun-Hee
    Evans, Arthur A.
    Bae, Jinhye
    Chiappelli, Maria C.
    Santangelo, Christian D.
    Lang, Robert J.
    Hull, Thomas C.
    Hayward, Ryan C.
    ADVANCED MATERIALS, 2015, 27 (01) : 79 - 85
  • [49] Folding, Tessellation, and Deployment of an Origami-Inspired Active-Material-Enabled Self-Folding Reflector Antenna
    Sessions, Deanna M.
    Ruff, Joshua T.
    Espinal, Francisco A.
    Huff, Gregory H.
    Jape, Sameer S.
    Peraza-Hernandez, E. A.
    Lagoudas, Dimitris C.
    Hartl, Darren J.
    Borges, Beatriz
    2018 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION & USNC/URSI NATIONAL RADIO SCIENCE MEETING, 2018, : 929 - 930
  • [50] ORIGAMI-TYPE FLEXIBLE THERMOELECTRIC GENERATOR FABRICATED BY SELF-FOLDING USING LINKAGE MECHANISM
    Sato, Yusuke
    Terashima, Shingo
    Iwase, Eiji
    2022 IEEE 35TH INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS CONFERENCE (MEMS), 2022, : 31 - 34