Random forest of dipolar trees for survival prediction

被引:0
|
作者
Kretowska, Malgorzata [1 ]
机构
[1] Bialystok Tech Univ, Fac Comp Sci, PL-15351 Bialystok, Poland
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the paper the method of using the ensemble of dipolar trees for survival prediction is presented. In the approach the random forest is applied to calculate the aggregated Kaplan-Meier survival function for a new patient. The induction of individual dipolar regression tree is based on minimization of a piece-wise linear criterion function. The algorithm allows using the information from censored observations for which the exact survival time is unknown. The Brier score is used to evaluate the prediction ability of the received model.
引用
收藏
页码:909 / 918
页数:10
相关论文
共 50 条
  • [31] Risk Prediction of Dyslipidemia for Chinese Han Adults Using Random Forest Survival Model
    Zhang, Xiaoshuai
    Tang, Fang
    Ji, Jiadong
    Han, Wenting
    Lu, Peng
    CLINICAL EPIDEMIOLOGY, 2019, 11 : 1047 - 1055
  • [32] Prediction of prognosis in elderly patients with sepsis based on machine learning (random survival forest)
    Zhang, Luming
    Huang, Tao
    Xu, Fengshuo
    Li, Shaojin
    Zheng, Shuai
    Lyu, Jun
    Yin, Haiyan
    BMC EMERGENCY MEDICINE, 2022, 22 (01)
  • [33] Ensemble of optimal trees, random forest and random projection ensemble classification
    Zardad Khan
    Asma Gul
    Aris Perperoglou
    Miftahuddin Miftahuddin
    Osama Mahmoud
    Werner Adler
    Berthold Lausen
    Advances in Data Analysis and Classification, 2020, 14 : 97 - 116
  • [34] FOREST PLOTS AND PREDICTION OF POSTOPERATIVE DELIRIUM: MISSING THE FOREST FOR THE TREES?
    Braillon, Alain
    JOURNAL OF THE AMERICAN GERIATRICS SOCIETY, 2015, 63 (06) : 1282 - 1283
  • [35] Ensemble of optimal trees, random forest and random projection ensemble classification
    Khan, Zardad
    Gul, Asma
    Perperoglou, Aris
    Miftahuddin, Miftahuddin
    Mahmoud, Osama
    Adler, Werner
    Lausen, Berthold
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2020, 14 (01) : 97 - 116
  • [36] LONG-TERM SURVIVAL PREDICTION IN EARLY BREAST CANCER: A MACHINE LEARNING APPROACH WITH RANDOM SURVIVAL FOREST
    Yoon, H.
    Han, S.
    Suh, H. S.
    Park, C.
    VALUE IN HEALTH, 2024, 27 (06) : S268 - S268
  • [37] Random Forest for Breast Cancer Prediction
    Octaviani, T. L.
    Rustam, Z.
    PROCEEDINGS OF THE 4TH INTERNATIONAL SYMPOSIUM ON CURRENT PROGRESS IN MATHEMATICS AND SCIENCES (ISCPMS2018), 2019, 2168
  • [38] Random Forest Prediction of IPO Underpricing
    Quintana, David
    Saez, Yago
    Isasi, Pedro
    APPLIED SCIENCES-BASEL, 2017, 7 (06):
  • [39] Quantum Circuit for Random Forest Prediction
    Safina L.
    Khadiev K.
    Zinnatullin I.
    Khadieva A.
    Russian Microelectronics, 2023, 52 (Suppl 1) : S384 - S389
  • [40] Random Spanning Trees and the Prediction of Weighted Graphs
    Cesa-Bianchi, Nicolo
    Gentile, Claudio
    Vitale, Fabio
    Zappella, Giovanni
    JOURNAL OF MACHINE LEARNING RESEARCH, 2013, 14 : 1251 - 1284