Homotopy theory of small diagrams over large categories

被引:12
|
作者
Chorny, Boris [1 ]
Dwyer, William G. [2 ]
机构
[1] ETH Zentrum, D MATH, CH-8059 Zurich, Switzerland
[2] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
基金
美国国家科学基金会;
关键词
SPACES; FUNCTORS;
D O I
10.1515/FORUM.2009.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let D be a large category which is cocomplete. We construct a model structure ( in the sense of Quillen) on the category of small functors from D to simplicial sets. As an application we construct homotopy localization functors on the category of simplicial sets which satisfy a stronger universal property than the customary homotopy localization functors do.
引用
收藏
页码:167 / 179
页数:13
相关论文
共 50 条
  • [21] Many homotopy categories are homotopy categories
    Cole, M
    TOPOLOGY AND ITS APPLICATIONS, 2006, 153 (07) : 1084 - 1099
  • [22] Homotopy theory of modules over operads and non-Σ operads in monoidal model categories
    Harper, John E.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2010, 214 (08) : 1407 - 1434
  • [23] On the global homotopy theory of symmetric monoidal categories
    Lenz, Tobias
    NEW YORK JOURNAL OF MATHEMATICS, 2023, 29 : 635 - 686
  • [24] GROUPOID ENRICHED CATEGORIES AND HOMOTOPY-THEORY
    FANTHAM, PHH
    MOORE, EJ
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1983, 35 (03): : 385 - 416
  • [25] ON LOCALIZATION IN CATEGORIES WITH AN APPLICATION TO HOMOTOPY-THEORY
    CASACUBERTA, C
    PESCHKE, G
    PFENNIGER, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1990, 310 (04): : 207 - 210
  • [26] A∞-functors and homotopy theory of dg-categories
    Faonte, Giovanni
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2017, 11 (03) : 957 - 1000
  • [27] Simple homotopy theory and nerve theorem for categories
    Tanaka, Kohei
    TOPOLOGY AND ITS APPLICATIONS, 2021, 291
  • [28] Morita homotopy theory for (∞, 1)-categories and ∞-operads
    Caviglia, Giovanni
    Gutierrez, Javier J.
    FORUM MATHEMATICUM, 2019, 31 (03) : 661 - 684
  • [29] Dwyer Kan homotopy theory of enriched categories
    Muro, Fernando
    JOURNAL OF TOPOLOGY, 2015, 8 (02) : 377 - 413
  • [30] Deformation theory of objects in homotopy and derived categories III: Abelian categories
    Efimov, Alexander I.
    Lunts, Valery A.
    Orlov, Dmitri O.
    ADVANCES IN MATHEMATICS, 2011, 226 (05) : 3857 - 3911