Homotopy theory of small diagrams over large categories

被引:12
|
作者
Chorny, Boris [1 ]
Dwyer, William G. [2 ]
机构
[1] ETH Zentrum, D MATH, CH-8059 Zurich, Switzerland
[2] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
基金
美国国家科学基金会;
关键词
SPACES; FUNCTORS;
D O I
10.1515/FORUM.2009.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let D be a large category which is cocomplete. We construct a model structure ( in the sense of Quillen) on the category of small functors from D to simplicial sets. As an application we construct homotopy localization functors on the category of simplicial sets which satisfy a stronger universal property than the customary homotopy localization functors do.
引用
收藏
页码:167 / 179
页数:13
相关论文
共 50 条
  • [1] HOMOTOPY THEORY WITH *-CATEGORIES
    Bunke, Ulrich
    THEORY AND APPLICATIONS OF CATEGORIES, 2019, 34 : 781 - 853
  • [2] Homotopy theory of diagrams
    Chachólski, WC
    Scherer, J
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 155 (736) : 1 - +
  • [3] VOGTS THEOREM ON CATEGORIES OF HOMOTOPY COHERENT DIAGRAMS
    CORDIER, JM
    PORTER, T
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1986, 100 : 65 - 90
  • [4] HOMOTOPY INVARIANTS IN SMALL CATEGORIES
    Carcacía-Campos, I.
    Macías-Virgós, E.
    Mosquera-Lois, David
    arXiv, 2022,
  • [5] HOMOTOPY THEORY IN GENERAL CATEGORIES
    HUBER, PJ
    MATHEMATISCHE ANNALEN, 1961, 144 (05) : 361 - 385
  • [6] HOMOTOPY THEORY IN ABELIAN CATEGORIES
    KLEISLI, H
    CANADIAN JOURNAL OF MATHEMATICS, 1962, 14 (01): : 139 - &
  • [7] ON THE HOMOTOPY THEORY OF ENRICHED CATEGORIES
    Berger, Clemens
    Moerdijk, Ieke
    QUARTERLY JOURNAL OF MATHEMATICS, 2013, 64 (03): : 805 - 846
  • [8] HOMOTOPY THEORY OF COFIBRATION CATEGORIES
    Szumilo, Karol
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2016, 18 (02) : 345 - 357
  • [9] Homotopy theory of spectral categories
    Tabuada, Goncalo
    ADVANCES IN MATHEMATICS, 2009, 221 (04) : 1122 - 1143
  • [10] Fusion categories and homotopy theory
    Etingof, Pavel
    Nikshych, Dmitri
    Ostrik, Victor
    QUANTUM TOPOLOGY, 2010, 1 (03) : 209 - 273