In this paper, we study the existence of a solution for a hemivariational inequality problem in a noncoercive framework. The approach adopted is an equilibrium problem formulation associated with a maximal monotone bifunction with pseudomonotone perturbation. We proceed by introducing auxiliary problems that will be studied using a new existence result for equilibrium problems. An example to illustrate the use of the theory is given.
机构:
King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran, Saudi ArabiaKing Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran, Saudi Arabia
Al-Homidan, Suliman
Ansari, Qamrul Hasan
论文数: 0引用数: 0
h-index: 0
机构:
King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran, Saudi Arabia
Aligarh Muslim Univ, Dept Math, Aligarh, Uttar Pradesh, IndiaKing Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran, Saudi Arabia
Ansari, Qamrul Hasan
Chadli, Ouayl
论文数: 0引用数: 0
h-index: 0
机构:
Ibn Zohr Univ, Dept Econ, Fac Econ & Social Sci, Agadir, MoroccoKing Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran, Saudi Arabia
机构:
Nanjing Xiaozhuang Univ, Sch Informat Engn, Nanjing 211171, Peoples R ChinaNanjing Xiaozhuang Univ, Sch Informat Engn, Nanjing 211171, Peoples R China
Yao, Zhangsong
Postolache, Mihai
论文数: 0引用数: 0
h-index: 0
机构:
Univ Politehnicu Bucharest, Dept Math & Informat, Bucharest 060042, Romania
Romanian Acad, Gheorghe Mihoc Caius Lacob Inst Math Stat & Appl, Bucharest 050711, RomaniaNanjing Xiaozhuang Univ, Sch Informat Engn, Nanjing 211171, Peoples R China