Equilibrium Conditions for Semiclathrate Hydrates Formed with CO2, N2, or CH4 in the Presence of Tri-n-butylphosphine Oxide

被引:27
|
作者
Du, Jianwei [1 ]
Wang, Liguang [1 ]
机构
[1] Univ Queensland, Sch Chem Engn, Brisbane, Qld 4072, Australia
基金
澳大利亚研究理事会;
关键词
SIMULATED FLUE-GAS; PHASE-EQUILIBRIUM; CARBON-DIOXIDE; DISSOCIATION ENTHALPIES; BROMIDE; METHANE; BUTYL; NITROGEN; SEPARATION; BEHAVIOR;
D O I
10.1021/ie403130h
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
We measured the thermodynamic stability conditions for the N-2, CO2, or CH4 semiclathrate hydrate formed from the aqueous solution of tri-n-butylphosphine oxide (TBPO) at 26 wt %, corresponding to the stoichiometric composition for TBPO center dot 34 center dot 5H(2)O. The measurements were performed in the temperature range 283.71-300.34 K and pressure range 0.35-19.43 MPa with the use of an isochoric equilibrium step-heating pressure-search method. The results showed that the presence of TBPO made these semiclathrate hydrates much more stable than the corresponding pure N-2, CO2, and CH, hydrates. At a given temperature, the semiclathrate hydrate of 26 wt % TB PO solution + CH4 was more stable than that of 26 wt % TBPO solution + CO2, which in turn was more stable than that of 26 wt % TBPO solution + N-2. We analyzed the phase equilibrium data using the Clausius-Clapeyron equation and found that, in the pressure range 0-20 MPa, the mean dissociation enthalpies for the semiclathrate hydrate systems of 26 wt % TBPO solution + N-2, 26 wt % TBPO solution + CO2, and 26 wt % TBPO solution + CH4 were 177.75, 206.23, and 159.00 kJ.mol(-1), respectively.
引用
收藏
页码:1234 / 1241
页数:8
相关论文
共 50 条
  • [41] Phase Equilibrium Studies of Tetrahydrofuran (THF) + CH4, THF + CO2, CH4 + CO2, and THF + CO2 + CH4 Hydrates
    Lee, Yun-Je
    Kawamura, Taro
    Yamamoto, Yoshitaka
    Yoon, Ji-Ho
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2012, 57 (12): : 3543 - 3548
  • [42] Shaping of MIL-53-Al and MIL-101 MOF for CO2/CH4, CO2/N2 and CH4/ N2 separation
    Singh, Narendra
    Dalakoti, Suman
    Sharma, Anjali
    Chauhan, Rekha
    Murali, R. Surya
    Divekar, Swapnil
    Dasgupta, Soumen
    Aarti
    SEPARATION AND PURIFICATION TECHNOLOGY, 2024, 341
  • [43] AlPO-18 membranes for CO2/CH4 and N2/CH4 separations
    Liu, Wen
    Tu, Ying
    Lu, Jun
    Liu, Yinuo
    Wu, Ting
    Gui, Tian
    Chen, Xiangshu
    Kita, Hidetoshi
    MICROPOROUS AND MESOPOROUS MATERIALS, 2023, 348
  • [44] CO2/CH4 and CH4/N2 separation on isomeric metal organic frameworks
    Wang, Xiaoqing
    Li, Libo
    Yang, Jiangfeng
    Li, Jinping
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2016, 24 (12) : 1687 - 1694
  • [45] CO2/CH4 and CH4/N2 separation on isomeric metal organic frameworks
    Xiaoqing Wang
    Libo Li
    Jiangfeng Yang
    Jinping Li
    Chinese Journal of Chemical Engineering, 2016, 24 (12) : 1687 - 1694
  • [46] Adsorption equilibrium of CO2, CH4 and N2 on zeolite 13X-APG
    Kong, Xiangming
    Yang, Ying
    Shen, Wenlong
    Li, Ping
    Yu, Jianguo
    Huagong Xuebao/CIESC Journal, 2013, 64 (06): : 2117 - 2124
  • [47] Adsorption equilibrium and diffusion of CH4, N2 and CO2 in coconut shell activated carbon
    Zhang, Bo
    Gu, Min
    Xian, Xue-Fu
    Lin, Wen-Sheng
    Meitan Xuebao/Journal of the China Coal Society, 2010, 35 (08): : 1341 - 1346
  • [48] Binary adsorption equilibrium of CH4, N2 and CO2 on zeolite ZSM-5
    Shen, Wenlong
    Li, Jiaxu
    Yang, Ying
    Li, Ping
    Yu, Jianguo
    Huagong Xuebao/CIESC Journal, 2014, 65 (09): : 3490 - 3498
  • [49] Development of carbon membrane for CO2/N2 and CO2/CH4 separation
    Alomair, Abdulaziz A.
    CURRENT SCIENCE, 2022, 122 (04): : 405 - 409
  • [50] Phase Equilibrium Data of Gas Hydrates Formed from a CO2 + CH4 Gas Mixture in the Presence of Tetrahydrofuran
    Zhong, Dong-Liang
    Li, Zheng
    Lu, Yi-Yu
    Sun, Dong-Jun
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2014, 59 (12): : 4110 - 4117