Photoconductive response of InAs/GaAs quantum dot stacks

被引:7
|
作者
Hofer, S [1 ]
Hirner, H [1 ]
Bratschitsch, R [1 ]
Strasser, G [1 ]
Unterrainer, K [1 ]
机构
[1] Vienna Tech Univ, Inst Festkorperelektron, A-1040 Vienna, Austria
来源
关键词
InAs/GaAs quantum dot stacks; photoluminescence spectroscopy; photocurrent spectroscopy; photodetector;
D O I
10.1016/S1386-9477(01)00517-3
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We investigate the energy levels of self-assembled InAs GaAs quantum (lot stacks by photoluminescence and vertical photocurrent spectroscopy. This leads to a photodetector with two response peaks at 55 and 253 meV due to interdot and dot-continuum transitions. Two samples are used for the investigations: one without and one with AlAs barriers between the dot layers to restrict the vertical current. These barriers have a strong influence oil the signal height Of the room temperature photoluminescence. They make-due to the lower dark current and lower noise-the interdot transitions visible in photocurrent spectroscopy and increase the dot-continuum photocurrent energy by the amount of the first miniband energy level of the AlAs GaAs superlattice. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:190 / 193
页数:4
相关论文
共 50 条
  • [1] Photoelectric Properties of InAs/GaAs Quantum Dot Photoconductive Antenna Wafers
    Gorodetsky, Andrei
    Yadav, Amit
    Avrutin, Eugene
    Fedorova, Ksenia A.
    Rafailov, Edik U.
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2018, 24 (02)
  • [2] Terahertz emission from InAs/GaAs quantum dot based photoconductive devices
    Daghestani, N. S.
    Cataluna, M. A.
    Berry, G.
    Ross, G.
    Rose, M. J.
    APPLIED PHYSICS LETTERS, 2011, 98 (18)
  • [3] Characterisation of InAs:GaAs Quantum Dot-Based Photoconductive THz Antennas
    Leyman, R.
    Carnegie, D.
    Bazieva, N.
    Molis, G.
    Arlauskas, A.
    Krotkus, A.
    Schulz, S.
    Reardon, C.
    Clarkes, E.
    Rafailov, E. U.
    2013 IEEE PHOTONICS CONFERENCE (IPC), 2013, : 418 - 419
  • [4] Electronic and optical properties of [110]-tilted InAs/GaAs quantum dot stacks
    Usman, Muhammad
    PHYSICAL REVIEW B, 2014, 89 (08):
  • [5] Optical study of InAs quantum dot stacks embedded in GaAs/AlAs superlattices
    Nedzinskas, R.
    Cechavicius, B.
    Kavaliauskas, J.
    Cerskus, A.
    Kundrotas, J.
    Karpus, V.
    Tamosiunas, V.
    Valusis, G.
    Fasching, G.
    Unterrainer, K.
    Strasser, G.
    PHYSICA STATUS SOLIDI C - CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 6, NO 12, 2009, 6 (12): : 2710 - +
  • [6] Photoconductivity of an InAs/GaAs self-assembled quantum dot photoconductive THz antenna
    Yadav, Amit
    Gorodetsky, Andrei
    Avrutin, Eugene
    Fedorova, Ksenia A.
    Rafailov, Edik U.
    2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2017,
  • [7] Energy level engineering in InAs quantum dot stacks embedded in AlAs/GaAs superlattices
    Rebohle, L
    Schrey, FF
    Hofer, S
    Strasser, G
    Unterrainer, K
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2003, 17 (1-4): : 42 - 45
  • [8] Modulated reflectance study of InAs quantum dot stacks embedded in GaAs/AlAs superlattice
    Nedzinskas, R.
    Cechavicius, B.
    Kavaliauskas, J.
    Karpus, V.
    Seliuta, D.
    Tamosiunas, V.
    Valusis, G.
    Fasching, G.
    Unterrainer, K.
    Strasser, G.
    JOURNAL OF APPLIED PHYSICS, 2009, 106 (06)
  • [9] Electron escape from self-assembled InAs/GaAs quantum dot stacks
    Brounkov, PN
    Suvorova, AA
    Maximov, MV
    Tsatsul'nikov, AF
    Zhukov, AE
    Egorov, AY
    Kovsh, AR
    Konnikov, SG
    Ihn, T
    Stoddart, ST
    Eaves, L
    Main, PC
    PHYSICA B-CONDENSED MATTER, 1998, 249 : 267 - 270
  • [10] Modulated reflectance study of InAs quantum dot stacks embedded in GaAs/AlAs superlattice
    Nedzinskas, R.
    Cechavicius, B.
    Kavaliauskas, J.
    Karpus, V.
    Seliuta, D.
    Tamošinas, V.
    Valušis, G.
    Fasching, G.
    Unterrainer, K.
    Strasser, G.
    Journal of Applied Physics, 2009, 106 (06):