DEPTH OF FACTORS OF SQUARE FREE MONOMIAL IDEALS

被引:4
|
作者
Popescu, Dorin [1 ]
机构
[1] Romanian Acad, Simion Stoilow Inst Math, Res Unit 5, Bucharest 014700, Romania
关键词
Monomial ideals; depth; Stanley depth; STANLEY CONJECTURE; BOUNDS;
D O I
10.1090/S0002-9939-2014-11939-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let I be an ideal of a polynomial algebra over a field generated by r square free monomials of degree d. If r is bigger than (or equal to, if I is not principal) the number of square free monomials of I of degree d + 1, then depth I-S = d. Let J subset of I, J not equal 0 be generated by square free monomials of degree = d + 1. If r is bigger than the number of square free monomials of I\J of degree d + 1 or, more generally, the Stanley depth of I/J is d, then depth I-S/J = d. In particular, Stanley's Conjecture holds in these cases.
引用
收藏
页码:1965 / 1972
页数:8
相关论文
共 50 条