DEPTH OF FACTORS OF SQUARE FREE MONOMIAL IDEALS

被引:4
|
作者
Popescu, Dorin [1 ]
机构
[1] Romanian Acad, Simion Stoilow Inst Math, Res Unit 5, Bucharest 014700, Romania
关键词
Monomial ideals; depth; Stanley depth; STANLEY CONJECTURE; BOUNDS;
D O I
10.1090/S0002-9939-2014-11939-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let I be an ideal of a polynomial algebra over a field generated by r square free monomials of degree d. If r is bigger than (or equal to, if I is not principal) the number of square free monomials of I of degree d + 1, then depth I-S = d. Let J subset of I, J not equal 0 be generated by square free monomials of degree = d + 1. If r is bigger than the number of square free monomials of I\J of degree d + 1 or, more generally, the Stanley depth of I/J is d, then depth I-S/J = d. In particular, Stanley's Conjecture holds in these cases.
引用
收藏
页码:1965 / 1972
页数:8
相关论文
共 50 条
  • [1] Depth of some square free monomial ideals
    Popescu, Dorin
    Zarojanu, Andrei
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2013, 56 (01): : 117 - 124
  • [2] Depth and minimal number of generators of square free monomial ideals
    Popescu, Dorin
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2011, 19 (03): : 163 - 166
  • [3] Monomial ideals via square-free monomial ideals
    Faridi, S
    Commutative Algebra: Geometric, Homological, Combinatorial and Computational Aspects, 2006, 244 : 85 - 114
  • [4] STANLEY DEPTH OF CERTAIN CLASSES OF SQUARE-FREE MONOMIAL IDEALS
    Cimpoeas, Mircea
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2018, 80 (02): : 33 - 40
  • [5] ON THE STABLE SET OF ASSOCIATED PRIME IDEALS OF MONOMIAL IDEALS AND SQUARE-FREE MONOMIAL IDEALS
    Khashyarmanesh, Kazem
    Nasernejad, Mehrdad
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (09) : 3753 - 3759
  • [6] Results on the regularity of square-free monomial ideals
    Ha, Huy Tai
    Woodroofe, Russ
    ADVANCES IN APPLIED MATHEMATICS, 2014, 58 : 21 - 36
  • [7] REES ALGEBRAS OF SQUARE-FREE MONOMIAL IDEALS
    Fouli, Louiza
    Lin, Kuei-Nuan
    JOURNAL OF COMMUTATIVE ALGEBRA, 2015, 7 (01) : 25 - 54
  • [8] HYPERGRAPHS AND REGULARITY OF SQUARE-FREE MONOMIAL IDEALS
    Lin, Kuei-Nuan
    McCullough, Jason
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2013, 23 (07) : 1573 - 1590
  • [9] The minimal free resolution of a class of square-free monomial ideals
    Zaare-Nahandi, R
    Zaare-Nahandi, R
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2004, 189 (1-3) : 263 - 278
  • [10] Resolutions of square-free monomial ideals via facet ideals:: A survey
    Ha, Huy Tai
    Van Tuyl, Adam
    ALGEBRA, GEOMETRY AND THEIR INTERACTIONS, 2007, 448 : 91 - +