CONNECTIVITY AT INFINITY FOR STATE SPACES OF COMPLETE BIPARTITE GRAPHS

被引:0
|
作者
Mazur, Kristen [1 ]
McCammond, Jon [2 ]
Meier, John [3 ]
Rohatgi, Ranjan [4 ]
机构
[1] Elon Univ, Dept Math & Stat, Elon, NC 27244 USA
[2] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
[3] Lafayette Coll, Dept Math, Easton, PA USA
[4] St Marys Coll, Dept Math & Comp Sci, Notre Dame, IN 46556 USA
关键词
graph braid groups; topology at infinity; CHESSBOARD; HOMOLOGY; TOPOLOGY;
D O I
10.1216/rmj.2022.52.667
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The state or configuration space for r vertices on a complete bipartite graph K-m,K-n is a CAT(0) cube complex, which is sometimes interpreted as a parameter space for r robots moving on a K-m,K-n. We combine an analysis of the topology of links of vertices in this complex, the description of a hidden symmetry among the parameters, and known results from the literature to explicitly compute the exact degree to which the universal covers of these complexes are connected at infinity.
引用
收藏
页码:667 / 686
页数:20
相关论文
共 50 条
  • [31] Cospectrality of complete bipartite graphs
    Oboudi, Mohammad Reza
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (12): : 2491 - 2497
  • [32] Higher matching complexes of complete graphs and complete bipartite graphs
    Singh, Anurag
    DISCRETE MATHEMATICS, 2022, 345 (04)
  • [33] Enumeration of matchings in the incidence graphs of complete and complete bipartite graphs
    Pippenger, N
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2003, 16 (01) : 47 - 64
  • [34] DECOMPOSITION OF COMPLETE GRAPHS AND COMPLETE BIPARTITE GRAPHS INTO α-LABELLED TREES
    Sethuraman, G.
    Venkatesh, S.
    ARS COMBINATORIA, 2009, 93 : 371 - 385
  • [35] Complete graphs and complete bipartite graphs without rainbow path
    Li, Xihe
    Wang, Ligong
    Liu, Xiangxiang
    DISCRETE MATHEMATICS, 2019, 342 (07) : 2116 - 2126
  • [36] On the Eulerian recurrent lengths of complete bipartite graphs and complete graphs
    Jimbo, Shuji
    2014 INTERNATIONAL CONFERENCE ON MANUFACTURING, OPTIMIZATION, INDUSTRIAL AND MATERIAL ENGINEERING (MOIME 2014), 2014, 58
  • [37] The competition graphs of oriented complete bipartite graphs
    Kim, Suh-Ryung
    Lee, Jung Yeun
    Park, Boram
    Sano, Yoshio
    DISCRETE APPLIED MATHEMATICS, 2016, 201 : 182 - 190
  • [38] Super-λ Connectivity of Bipartite Graphs
    Chen, Xing
    Xiong, Wei
    Meng, Jixiang
    ARS COMBINATORIA, 2014, 117 : 353 - 361
  • [39] Connectivity of large bipartite digraphs and graphs
    Balbuena, MC
    Carmona, A
    Fabrega, J
    Fiol, MA
    DISCRETE MATHEMATICS, 1997, 174 (1-3) : 3 - 17
  • [40] Connectivity of large bipartite digraphs and graphs
    Dept. de Matemat. Aplicada III, Univ. Politecnica de Catalunya, C/Gran Cap., s/n Mod. C-2 Camp. Nord, 08034 Barcelona, Spain
    不详
    Discrete Math, 1-3 (3-17):