A Local Search Maximum Likelihood Parameter Estimator of Chirp Signal

被引:7
|
作者
Ben, Guangli [1 ]
Zheng, Xifeng [1 ]
Wang, Yongcheng [1 ]
Zhang, Ning [1 ,2 ]
Zhang, Xin [1 ,2 ]
机构
[1] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Changchun 130033, Peoples R China
[2] Univ Chinese Acad Sci, Coll Mat Sci & Optoelect Technol, Beijing 100049, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 02期
关键词
chirp parameter estimation; signal denoising; time-frequency analysis; maximum likelihood; FRACTIONAL FOURIER-TRANSFORM; LFM SIGNALS; FREQUENCY;
D O I
10.3390/app11020673
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A local search Maximum Likelihood (ML) parameter estimator for mono-component chirp signal in low Signal-to-Noise Ratio (SNR) conditions is proposed in this paper. The approach combines a deep learning denoising method with a two-step parameter estimator. The denoiser utilizes residual learning assisted Denoising Convolutional Neural Network (DnCNN) to recover the structured signal component, which is used to denoise the original observations. Following the denoising step, we employ a coarse parameter estimator, which is based on the Time-Frequency (TF) distribution, to the denoised signal for approximate estimation of parameters. Then around the coarse results, we do a local search by using the ML technique to achieve fine estimation. Numerical results show that the proposed approach outperforms several methods in terms of parameter estimation accuracy and efficiency.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 50 条
  • [21] On the uniqueness of the maximum likelihood estimator
    Orme, CD
    Ruud, PA
    ECONOMICS LETTERS, 2002, 75 (02) : 209 - 217
  • [22] The density of the maximum likelihood estimator
    Hillier, G
    Armstrong, M
    ECONOMETRICA, 1999, 67 (06) : 1459 - 1470
  • [23] The Sherpa Maximum Likelihood Estimator
    Nguyen, D.
    Doe, S.
    Evans, I.
    Hain, R.
    Primini, F.
    ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS XX, 2011, 442 : 517 - 520
  • [24] A semiparametric maximum likelihood estimator
    Ai, CR
    ECONOMETRICA, 1997, 65 (04) : 933 - 963
  • [25] Parameter identification of superplastic constitutive model based on heteroscedastic maximum likelihood estimator
    Xu, B. Y.
    Qu, J.
    Jin, Q. L.
    MATERIALS RESEARCH INNOVATIONS, 2011, 15 : S462 - S465
  • [26] A robust conditional maximum likelihood estimator for generalized linear models with a dispersion parameter
    Marazzi, Alfio
    Valdora, Marina
    Yohai, Victor
    Amiguet, Michael
    TEST, 2019, 28 (01) : 223 - 241
  • [27] A robust conditional maximum likelihood estimator for generalized linear models with a dispersion parameter
    Alfio Marazzi
    Marina Valdora
    Victor Yohai
    Michael Amiguet
    TEST, 2019, 28 : 223 - 241
  • [29] Bias-corrected maximum likelihood estimator of the negative binomial dispersion parameter
    Saha, K
    Paul, S
    BIOMETRICS, 2005, 61 (01) : 179 - 185
  • [30] DISTRIBUTION OF MAXIMUM LIKELIHOOD ESTIMATOR OF PARAMETER IN FIRST-ORDER AUTOREGRESSIVE SERIES
    REEVES, JE
    BIOMETRIKA, 1972, 59 (02) : 387 - 394