Gyrokinetic simulations of m=0 mode in sheared flow Z-pinch plasmas

被引:4
|
作者
Geyko, V. I. [1 ]
Dorf, M. [1 ]
Angus, J. R. [1 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
关键词
STABILITY; STABILIZATION;
D O I
10.1063/1.5100542
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Axisymmetric stability properties of sheared flow Z-pinch plasmas are studied by making use of the gyrokinetic approximation in the long-wavelength limit. Numerical simulations are carried out with the high-order finite-volume code COntinuum Gyrokinetic Edge New Technology (COGENT) and are analyzed for the parameters characteristic of the FuZE experiment. Reduction of the linear growth rate with increasing shear is observed, and the results are elucidated by making use of a local dispersion relation analysis. In addition, COGENT simulations are compared with fully kinetic particle-in-cell simulations, and with an ideal magnetohydrodynamics (MHD) model. Good agreement between the gyrokinetic and fully kinetic results for the linear stability is found, with the gyrokinetic model requiring much less computational time due to its ability to step over particle gyroperiod. The ideal MHD model is found to be consistent with the kinetic models in the long-wavelength part of the spectra (k rho(i)), while failing to adequately predict short-scale (k rho(i)) stability. Here, k is the axial wavelength vector and rho(i) is the ion gyroradius.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Plasma pressure profiles in a sheared-flow-stabilized Z-pinch
    Goyon, C.
    Bott-Suzuki, S. C.
    Youmans, A. E.
    Banasek, J. T.
    Morton, L. A.
    Levitt, B.
    Barhydt, J. R.
    Morgan, K. D.
    Liekhus-Schmaltz, C.
    Young, W. C.
    Higginson, D. P.
    Hossack, A. C.
    Meier, E. T.
    Nelson, B. A.
    Quinley, M.
    Taylor, A.
    Tsai, P.
    van Rossum, N.
    Shah, A.
    Stepanov, A. D.
    Sutherland, D. A.
    Weber, T. R.
    Shumlak, U.
    McLean, H. S.
    PHYSICS OF PLASMAS, 2024, 31 (07)
  • [22] Stability analysis of viscous Z-pinch plasma with a sheared axial flow
    Zhang Yang
    Ding Ning
    CHINESE PHYSICS B, 2008, 17 (08) : 2994 - 3002
  • [23] Special issue on Z-pinch plasmas
    Coverdale, Christine A.
    Velikovich, Alexander L.
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2006, 34 (05) : 2230 - 2231
  • [24] Special Issue on Z-Pinch Plasmas
    Ampleford, David J.
    Rawat, Rajdeep S.
    Safronova, Alla S.
    Bott, Simon C.
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2012, 40 (12) : 3186 - 3188
  • [25] Special Issue on Z-Pinch Plasmas
    Bott, Simon C.
    Chittenden, Jeremy P.
    Coverdale, Christine A.
    Giuliani, John L.
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2010, 38 (04) : 526 - 528
  • [26] INVESTIGATIONS ON DENSE Z-PINCH PLASMAS
    FINKEN, KH
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (08): : 1037 - 1037
  • [27] Electrode durability and sheared-flow-stabilized Z-pinch fusion energy
    Thompson, M. C.
    Simpson, S. C.
    Beers, C. J.
    Dadras, J.
    Meier, E. T.
    Stoltz, P. H.
    PHYSICS OF PLASMAS, 2023, 30 (10)
  • [28] Engineering Paradigms for Sheared-Flow-Stabilized Z-Pinch Fusion Energy
    Thompson, M. C.
    Levitt, B.
    Nelson, B. A.
    Shumlak, U.
    FUSION SCIENCE AND TECHNOLOGY, 2023, 79 (08) : 1051 - 1058
  • [29] Thermonuclear neutron emission from a sheared-flow stabilized Z-pinch
    Mitrani, James M.
    Brown, Joshua A.
    Goldblum, Bethany L.
    Laplace, Thibault A.
    Claveau, Elliot L.
    Draper, Zack T.
    Forbes, Eleanor G.
    Golingo, Ray P.
    McLean, Harry S.
    Nelson, Brian A.
    Shumlak, Uri
    Stepanov, Anton
    Weber, Tobin R.
    Zhang, Yue
    Higginson, Drew P.
    PHYSICS OF PLASMAS, 2021, 28 (11)
  • [30] High Energy Density Z-Pinch Plasmas Using Flow Stabilization
    Shumlak, U.
    Golingo, R. P.
    Nelson, B. A.
    Bowers, C. A.
    Doty, S. A.
    Forbes, E. G.
    Hughes, M. C.
    Kim, B.
    Knecht, S. D.
    Lambert, K. K.
    Lowrie, W.
    Ross, M. P.
    Weed, J. R.
    9TH INTERNATIONAL CONFERENCE ON DENSE Z PINCHES, 2014, 1639 : 76 - 79