A limiting problem for a family of eigenvalue problems involving p-Laplacians

被引:2
|
作者
Mihailescu, Mihai [1 ,2 ]
Rossi, Julio D. [3 ]
Stancu-Dumitru, Denisa [2 ,4 ]
机构
[1] Univ Craiova, Dept Math, Craiova 200585, Romania
[2] Romanian Acad, Simion Stoilow Inst Math, Res Grp Project PN III P4 ID PCE 2016 0035, Bucharest 010702, Romania
[3] Univ Buenos Aires, FCEyN, Dept Matemat, Ciudad Univ,Pab 1, RA-1428 Buenos Aires, DF, Argentina
[4] Univ Politehn Bucuresti, Dept Math & Comp Sci, Bucharest 060042, Romania
来源
REVISTA MATEMATICA COMPLUTENSE | 2019年 / 32卷 / 03期
关键词
Eigenvalue problem; Weak solution; Distance function; Gamma-convergence; Viscosity solution; INFINITY;
D O I
10.1007/s13163-018-00291-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we analyse the existence of principal eigenvalues and eigenfunctions for a family of eigenvalue problems described by a system consisting in two partial differential equations involving p-Laplacians. Next, we study the asymptotic behaviour, as p ->infinity, of the sequence of principal eigenfunctions and we show that, passing eventually to a subsequence, it converges uniformly to a certain limit given by a pair of continuous functions. Moreover, we identify the limiting equations which have as solutions the limiting functions.
引用
收藏
页码:631 / 653
页数:23
相关论文
共 50 条