A limiting problem for a family of eigenvalue problems involving p-Laplacians

被引:2
|
作者
Mihailescu, Mihai [1 ,2 ]
Rossi, Julio D. [3 ]
Stancu-Dumitru, Denisa [2 ,4 ]
机构
[1] Univ Craiova, Dept Math, Craiova 200585, Romania
[2] Romanian Acad, Simion Stoilow Inst Math, Res Grp Project PN III P4 ID PCE 2016 0035, Bucharest 010702, Romania
[3] Univ Buenos Aires, FCEyN, Dept Matemat, Ciudad Univ,Pab 1, RA-1428 Buenos Aires, DF, Argentina
[4] Univ Politehn Bucuresti, Dept Math & Comp Sci, Bucharest 060042, Romania
来源
REVISTA MATEMATICA COMPLUTENSE | 2019年 / 32卷 / 03期
关键词
Eigenvalue problem; Weak solution; Distance function; Gamma-convergence; Viscosity solution; INFINITY;
D O I
10.1007/s13163-018-00291-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we analyse the existence of principal eigenvalues and eigenfunctions for a family of eigenvalue problems described by a system consisting in two partial differential equations involving p-Laplacians. Next, we study the asymptotic behaviour, as p ->infinity, of the sequence of principal eigenfunctions and we show that, passing eventually to a subsequence, it converges uniformly to a certain limit given by a pair of continuous functions. Moreover, we identify the limiting equations which have as solutions the limiting functions.
引用
收藏
页码:631 / 653
页数:23
相关论文
共 50 条
  • [1] A limiting problem for a family of eigenvalue problems involving p-Laplacians
    Mihai Mihăilescu
    Julio D. Rossi
    Denisa Stancu-Dumitru
    Revista Matemática Complutense, 2019, 32 : 631 - 653
  • [2] Eigenvalue problems for perturbed p-Laplacians
    Hasanov, M.
    ICMS: INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCE, 2010, 1309 : 400 - 410
  • [3] The limit as p → ∞ in the eigenvalue problem for a system of p-Laplacians
    Bonheure, Denis
    Rossi, Julio D.
    Saintier, Nicolas
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (05) : 1771 - 1785
  • [4] A class of multi-parameter eigenvalue problems for perturbed p-Laplacians
    Gungor, F.
    Hasanov, M.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 389 (02) : 821 - 832
  • [5] A system of local/nonlocal p-Laplacians: The eigenvalue problem and its asymptotic limit as p → ∞
    Buccheri, S.
    da Silva, J., V
    de Miranda, L. H.
    ASYMPTOTIC ANALYSIS, 2022, 128 (02) : 149 - 181
  • [6] An indefinite type equation involving two p-Laplacians
    Ramos Quoirin, Humberto
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 387 (01) : 189 - 200
  • [7] A limiting problem for local/non-local p-Laplacians with concave–convex nonlinearities
    João Vitor da Silva
    Ariel M. Salort
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [8] Global bifurcation from the first eigenvalue for a system of p-Laplacians
    Fleckinger, J
    Manasevich, R
    deThelin, F
    MATHEMATISCHE NACHRICHTEN, 1996, 182 : 217 - 242
  • [9] A limiting problem for local/non-local p-Laplacians with concave-convex nonlinearities
    da Silva, Joao Vitor
    Salort, Ariel M.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (06):
  • [10] THE LIMIT AS p → ∞ IN FREE BOUNDARY PROBLEMS WITH FRACTIONAL p-LAPLACIANS
    Vitor da Silva, Joao
    Rossi, Julio D.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (04) : 2739 - 2769