Perturbation of Wreath Products and Quasi-Isometric Rigidity 1

被引:1
|
作者
Akhmedov, Azer [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
关键词
D O I
10.1093/imrn/rnn004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend the notion of perturbation of wreath products, and by the methods similar to [3], prove that certain perturbations are still quasi-isometric to the original wreath product. As an application, we show that a property of containing free subgroup or free subsemigroup, and many other algebraic properties of groups are not quasi-isometrically rigid.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] QUASI-ISOMETRIC ALMOST ORTHOGONAL GRIDS
    Chumakov, G. A.
    EURASIAN JOURNAL OF MATHEMATICAL AND COMPUTER APPLICATIONS, 2019, 7 (04): : 18 - 43
  • [42] Quasi-isometric embeddings into diffeomorphism groups
    Brandenbursky, Michael
    Kedra, Jarek
    GROUPS GEOMETRY AND DYNAMICS, 2013, 7 (03) : 523 - 534
  • [43] Commensurability of groups quasi-isometric to RAAGs
    Jingyin Huang
    Inventiones mathematicae, 2018, 213 : 1179 - 1247
  • [44] ON QUASI-ISOMETRIC MAPPINGS, .2.
    JOHN, F
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1969, 22 (02) : 265 - &
  • [45] A Tukia-type theorem for nilpotent Lie groups and quasi-isometric rigidity of solvable groups
    Dymarz, Tullia
    Fisher, David
    Xie, Xiangdong
    ADVANCES IN MATHEMATICS, 2025, 468
  • [46] COMMABILITY OF GROUPS QUASI-ISOMETRIC TO TREES
    Carette, Mathieu
    ANNALES DE L INSTITUT FOURIER, 2018, 68 (04) : 1365 - 1398
  • [47] Commensurability of groups quasi-isometric to RAAGs
    Huang, Jingyin
    INVENTIONES MATHEMATICAE, 2018, 213 (03) : 1179 - 1247
  • [48] Quasi-isometric rigidity for graphs of virtually free groups with two-ended edge groups
    Shepherd, Sam
    Woodhouse, Daniel J.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2022, 2022 (782): : 121 - 173
  • [49] Quasi-isometric groups with no common model geometry
    Stark, Emily
    Woodhouse, Daniel J.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2019, 99 (03): : 853 - 871
  • [50] Quasi-isometric embedding of Kerr poloidal submanifolds
    Chantry, Loic
    Dauvergne, Frederic
    Temmam, Youssef
    Cayatte, Veronique
    CLASSICAL AND QUANTUM GRAVITY, 2021, 38 (14)