A unique-maximum k-coloring with respect to faces of a plane graph G is a coloring with colors 1, ..., k so that, for each face a of G, the maximum color occurs exactly once on the vertices of a. We prove that any plane graph is unique-maximum 3-colorable and has a proper unique-maximum coloring with 6 colors.
机构:
Université Montpellier 2 - LIRMM 161 rue Ada 34095 Montpellier, FranceUniversité Montpellier 2 - LIRMM 161 rue Ada 34095 Montpellier, France
Bonamy, Marthe
Hocquard, Hervé
论文数: 0引用数: 0
h-index: 0
机构:
LaBRI (Université de Bordeaux), 351 cours de la Libération, Talence Cedex,33405, FranceUniversité Montpellier 2 - LIRMM 161 rue Ada 34095 Montpellier, France
Hocquard, Hervé
Kerdjoudj, Samia
论文数: 0引用数: 0
h-index: 0
机构:
LIFORCE, Faculty of Mathematics, USTHB, BP 32 El-Alia, Bab-Ezzouar 16111, Algiers, AlgeriaUniversité Montpellier 2 - LIRMM 161 rue Ada 34095 Montpellier, France
Kerdjoudj, Samia
Raspaud, André
论文数: 0引用数: 0
h-index: 0
机构:
LaBRI (Université de Bordeaux), 351 cours de la Libération, Talence Cedex,33405, FranceUniversité Montpellier 2 - LIRMM 161 rue Ada 34095 Montpellier, France
机构:
Nokia Bell Labs, Math Syst, 600 Mt Ave, Murray Hill, NJ 07974 USA
Eindhoven Univ Technol, Dept Math & Comp Sci, POB 513, NL-5600 MB Eindhoven, NetherlandsNokia Bell Labs, Math Syst, 600 Mt Ave, Murray Hill, NJ 07974 USA
Borst, Sem
Bradonjic, Milan
论文数: 0引用数: 0
h-index: 0
机构:
Nokia Bell Labs, Math Syst, 600 Mt Ave, Murray Hill, NJ 07974 USANokia Bell Labs, Math Syst, 600 Mt Ave, Murray Hill, NJ 07974 USA