A convexity principle for interacting gases

被引:563
|
作者
McCann, RJ
机构
[1] Department of Mathematics, Brown University, Providence
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1006/aima.1997.1634
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A new set of inequalities is introduced, based on a novel but natural interpolation between Borel probability measures on R-d. Using these estimates in lieu of convexity or rearrangement inequalities, the existence and uniqueness problems are solved for a family of attracting gas models. In these models, the gas interacts with itself through a force which increases with distance and is governed by an equation of state P = P(rho) relating pressure to density. P(rho)/rho((d-1)/d) is assumed non-decreasing for a ti-dimensional gas. By showing that the internal and potential energies for the system are convex Functions of the interpolation parameter, an energy minimizing state - unique up to translation - is proven to exist. The concavity established for \\rho(t)\\(-p/d) as a function of t is an element of [0, 1] generalizes the Brunn-Minkowski inequality from sets to measures. (C) 1997 Academic Press.
引用
收藏
页码:153 / 179
页数:27
相关论文
共 50 条
  • [31] Theory of strongly interacting Fermi gases
    Drummond, Peter D.
    Hu, Hui
    Liu, Xia-Ji
    JOURNAL OF MODERN OPTICS, 2009, 56 (18-19) : 2076 - 2081
  • [32] Thermodynamics of strongly interacting Fermi gases
    Zwierlein, M. W.
    QUANTUM MATTER AT ULTRALOW TEMPERATURES, 2016, 191 : 143 - 220
  • [33] Strongly interacting ultracold quantum gases
    Hui Zhai
    Frontiers of Physics in China, 2009, 4 : 1 - 20
  • [34] The role of spin in interacting excitonic gases
    Aichmayr, G
    Viña, L
    Kennedy, SP
    Phillips, RT
    Mendez, EE
    PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 2002, 190 (03): : 615 - 623
  • [35] Universality in rotating strongly interacting gases
    Mulkerin, B. C.
    Bradly, C. J.
    Quiney, H. M.
    Martin, A. M.
    PHYSICAL REVIEW A, 2012, 85 (05):
  • [36] Thermal diffusion of interacting lattice gases
    Vikhrenko, VS
    Bokun, GS
    Gapanjuk, DV
    Groda, YG
    SOLID STATE IONICS, 2003, 157 (1-4) : 221 - 226
  • [37] Interacting Loop Ensembles and Bose Gases
    Frohlich, Jurg
    Knowles, Antti
    Schlein, Benjamin
    Sohinger, Vedran
    ANNALES HENRI POINCARE, 2023, 24 (05): : 1439 - 1503
  • [38] Levy statistics of interacting Rydberg gases
    Vogt, Thibault
    Han, Jingshan
    Thiery, Alexandre
    Li, Wenhui
    PHYSICAL REVIEW A, 2017, 95 (05)
  • [39] Bogoliubov Spectrum of Interacting Bose Gases
    Lewin, Mathieu
    Phan Thanh Nam
    Serfaty, Sylvia
    Solovej, Jan Philip
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2015, 68 (03) : 413 - 471
  • [40] Phase diagram for interacting Bose gases
    Morawetz, K.
    Maennel, M.
    Schreiber, M.
    PHYSICAL REVIEW B, 2007, 76 (07)