Nano carriers for drug transport across the blood-brain barrier

被引:202
|
作者
Li, Xinming [1 ,2 ]
Tsibouklis, John [2 ]
Weng, Tingting [3 ]
Zhang, Buning
Yin, Guoqiang [1 ]
Feng, Guangzhu [1 ]
Cui, Yingde [1 ]
Savina, Irina N. [4 ]
Mikhalovska, Lyuba I. [4 ]
Sandeman, Susan R. [4 ]
Howel, Carol A. [4 ]
Mikhalovsky, Sergey V. [4 ,5 ]
机构
[1] Zhongkai Univ Agr & Engn, Sch Chem & Chem Engn, 24 Dongsha St, Guangzhou 510225, Guangdong, Peoples R China
[2] Univ Portsmouth, Sch Pharm & Biomed Sci, Portsmouth, Hants, England
[3] Guangdong Petr & Chem Technol Inst, Dept Chem Engn, Foshan, Peoples R China
[4] Univ Brighton, Sch Pharm & Biomol Sci, Brighton, E Sussex, England
[5] Nazarbayev Univ, Sch Engn, Astana, Kazakhstan
关键词
Blood-brain barrier; drug delivery; nanomaterials; SOLID LIPID NANOPARTICLES; PLASMA-PROTEIN ADSORPTION; IN-VITRO ASSESSMENT; TARGETED DELIVERY; POLYMERIC NANOPARTICLES; CNS DELIVERY; ANTICANCER DRUGS; QUANTUM DOTS; MAGNETIC NANOPARTICLES; COLLOIDAL CARRIERS;
D O I
10.1080/1061186X.2016.1184272
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Effective therapy lies in achieving a therapeutic amount of drug to the proper site in the body and then maintaining the desired drug concentration for a sufficient time interval to be clinically effective for treatment. The blood-brain barrier (BBB) hinders most drugs from entering the central nervous system (CNS) from the blood stream, leading to the difficulty of delivering drugs to the brain via the circulatory system for the treatment, diagnosis and prevention of brain diseases. Several brain drug delivery approaches have been developed, such as intracerebral and intracerebroventricular administration, intranasal delivery and blood-to-brain delivery, as a result of transient BBB disruption induced by biological, chemical or physical stimuli such as zonula occludens toxin, mannitol, magnetic heating and ultrasound, but these approaches showed disadvantages of being dangerous, high cost and unsuitability for most brain diseases and drugs. The strategy of vector-mediated blood-to-brain delivery, which involves improving BBB permeability of the drug-carrier conjugate, can minimize side effects, such as being submicrometre objects that behave as a whole unit in terms of their transport and properties, nanomaterials, are promising carrier vehicles for direct drug transport across the intact BBB as a result of their potential to enter the brain capillary endothelial cells by means of normal endocytosis and transcytosis due to their small size, as well as their possibility of being functionalized with multiple copies of the drug molecule of interest. This review provids a concise discussion of nano carriers for drug transport across the intact BBB, various forms of nanomaterials including inorganic/solid lipid/polymeric nanoparticles, nanoemulsions, quantum dots, nanogels, liposomes, micelles, dendrimers, polymersomes and exosomes are critically evaluated, their mechanisms for drug transport across the BBB are reviewed, and the future directions of this area are fully discussed.
引用
收藏
页码:17 / 28
页数:12
相关论文
共 50 条
  • [41] Drug transport at the blood-brain barrier and the choroid plexus
    Graff, CL
    Pollack, GM
    CURRENT DRUG METABOLISM, 2004, 5 (01) : 95 - 108
  • [42] Jumping the Barrier: Modeling Drug Penetration across the Blood-Brain Barrier
    Peer, Cody J.
    Chau, Cindy H.
    Figg, William D.
    CLINICAL CANCER RESEARCH, 2017, 23 (24) : 7437 - 7439
  • [43] New advances in diagnosis and treatment of nano drug delivery systems across the blood-brain barrier
    Wang, Jinyu
    Yu, Yaqin
    Zhang, Chongqing
    Song, Junling
    Zheng, Ziliang
    Yan, Weihong
    NANOCOMPOSITES, 2023, 9 (01) : 116 - 127
  • [44] Drug transfer across the blood-brain barrier and improvement of brain delivery
    Jolliet-Riant, P
    Tillement, JP
    FUNDAMENTAL & CLINICAL PHARMACOLOGY, 1999, 13 (01) : 16 - 26
  • [45] Drug Delivery to the Brain across the Blood-Brain Barrier Using Nanomaterials
    Tsou, Yung-Hao
    Zhang, Xue-Qing
    Zhu, He
    Syed, Sahla
    Xu, Xiaoyang
    SMALL, 2017, 13 (43)
  • [46] Zinc transport across an in vitro blood-brain barrier model
    Bobilya, DJ
    Guerin, JL
    Rowe, DJ
    JOURNAL OF TRACE ELEMENTS IN EXPERIMENTAL MEDICINE, 1997, 10 (01): : 9 - 18
  • [47] Characteristics of substance P transport across the blood-brain barrier
    Chappa, Arvind K.
    Audus, Kenneth L.
    Lunte, Susan M.
    PHARMACEUTICAL RESEARCH, 2006, 23 (06) : 1201 - 1208
  • [48] Intracellular transport and regulation of transcytosis across the blood-brain barrier
    Villasenor, Roberto
    Lampe, Josephine
    Schwaninger, Markus
    Collin, Ludovic
    CELLULAR AND MOLECULAR LIFE SCIENCES, 2019, 76 (06) : 1081 - 1092
  • [49] Atomistic Model of Solute Transport across the Blood-Brain Barrier
    Jorgensen, Christian
    Ulmschneider, Martin B.
    Searson, Peter C.
    ACS OMEGA, 2022, 7 (01): : 1100 - 1112
  • [50] Impaired transport of leptin across the blood-brain barrier in obesity
    Banks, WA
    DiPalma, CR
    Farrell, CL
    PEPTIDES, 1999, 20 (11) : 1341 - 1345